Back to Search
Start Over
Enhanced neurite outgrowth on electrically conductive carbon aerogel substrates in the presence of an external electric field
- Source :
- Soft Matter. 17:4489-4495
- Publication Year :
- 2021
- Publisher :
- Royal Society of Chemistry (RSC), 2021.
-
Abstract
- Previous works from our laboratory have firmly established that aerogels are a suitable substrate to elicit accelerated neurite extension. On non-conducting aerogels, in the presence of an externally-applied DC bias, neurons extended neurites which were preferentially aligned towards the anode. In this investigation, we sought to determine whether electrically-conductive carbon aerogels elicited a more robust alignment of neurites toward the anode than non-conductive aerogels due to the capacity of conductive aerogels to sustain a current, thereby providing a direct interface between neurons and the external electrical stimulus. To determine if this was the case, we plated PC12 neuronal cells on electrically conductive carbon aerolges derived from acetic acid-catalized resorcinol formaldehyde aerogels (ARF-CA) and subjected them to an external electric field. The voltages applied at the electrodes of the custom-built electro-stimulation chamber were 0 V, 15 V, and 30 V. For each voltage, the directionality and length of the neurites extended by PC12 cells were determined and compared to those observed when PC12 cells were plated on non-conductive aerogels subjected to the same voltage. The results show that the directionality of neurite extension was similar between conductive and non-conductive aerogels. A higher neurite length difference was observed on conductive aerogels with increasing voltage, 43% and 106% for 0-15 V and 0-30 V respectively, compared to non-conductive aerogels, 12% and 20%. These findings indicate that conductive carbon aerogels have a greater potential as scaffolds for nerve regeneration than non-conductive ones.
- Subjects :
- 0303 health sciences
Materials science
Neurite
chemistry.chemical_element
Aerogel
02 engineering and technology
General Chemistry
Substrate (electronics)
021001 nanoscience & nanotechnology
Condensed Matter Physics
Anode
03 medical and health sciences
chemistry
Electric field
Electrode
Composite material
0210 nano-technology
Electrical conductor
Carbon
030304 developmental biology
Subjects
Details
- ISSN :
- 17446848 and 1744683X
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- Soft Matter
- Accession number :
- edsair.doi.dedup.....34d9f4372472914fc957769bdd8fd1d7
- Full Text :
- https://doi.org/10.1039/d1sm00183c