Back to Search Start Over

Metric properties of outer space

Authors :
Armando Martino
Stefano Francaviglia
S. Francaviglia
A. Martino
Source :
Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Publicacions Matemàtiques; Vol. 55, Núm. 2 (2011); p. 433-473, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Publ. Mat. 55, no. 2 (2011), 433-473, Recercat. Dipósit de la Recerca de Catalunya, instname
Publication Year :
2021

Abstract

We define metrics on Culler-Vogtmann space, which are an analogue of the Teichmuller metric and are constructed using stretching factors. In fact the metrics we study are related, one being a symmetrised version of the other. We investigate the basic properties of these metrics, showing the advantages and pathologies of both choices. We show how to compute stretching factors between marked metric graphs in an easy way and we discuss the behaviour of stretching factors under iterations of automorphisms. We study metric properties of folding paths, showing that they are geodesic for the non-symmetric metric and, if they do not enter the thin part of Outer space, quasi-geodesic for the symmetric metric.<br />changelog v1 -> v2: Added an example, suggested by Bert Wiest and Thierry Coulbois showing that the symmetric metric is not geodesic. Minor changes. Biblio updated

Details

Database :
OpenAIRE
Journal :
Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Publicacions Matemàtiques; Vol. 55, Núm. 2 (2011); p. 433-473, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Publ. Mat. 55, no. 2 (2011), 433-473, Recercat. Dipósit de la Recerca de Catalunya, instname
Accession number :
edsair.doi.dedup.....34d494dec1f34d580d2714f1d0c5dd80