Back to Search Start Over

Gold–Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity

Authors :
Graham J. Hutchings
Sriram Venkatesan
Christian Liebscher
Karl Johann Jakob Mayrhofer
Simon J. Freakley
Enrico Pizzutilo
Serhiy Cherevko
Gerhard Dehm
Source :
Pizzutilo, E, Freakley, S J, Cherevko, S, Venkatesan, S, Hutchings, G J, Liebscher, C H, Dehm, G & Mayrhofer, K JJ 2017, ' Gold–Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity ', ACS Catalysis, vol. 7, no. 9, pp. 5699-5705 . https://doi.org/10.1021/acscatal.7b01447
Publication Year :
2017
Publisher :
American Chemical Society (ACS), 2017.

Abstract

During application, electrocatalysts are exposed to harsh electrochemical conditions, which can induce degradation. This work addresses the degradation of AuPd bimetallic catalysts used for the electrocatalytic production of hydrogen peroxide (H2O2) by the oxygen reduction reaction (ORR). Potential-dependent changes in the AuPd surface composition occur because the two metals have different dissolution onset potentials, resulting in catalyst dealloying. Using a scanning flow cell (SFC) with an inductively coupled plasma mass spectrometer (ICP-MS), simultaneous Pd and/or Au dissolution can be observed. Thereafter, three accelerated degradation protocols (ADPs), simulating different dissolution regimes, are employed to study the catalyst structure degradation on the nanoscale with identical location (IL) TEM. When only Pd or both Au and Pd dissolve, the composition changes rapidly and the surface becomes enriched with Au, as observed by cyclic voltammetry and elemental mapping. Such changes are mirrored by the evolution of electrocatalytic performances toward H2O2 production. Our experimental findings are finally summarized in a dissolution/structure/selectivity mechanism, providing a clear picture of the degradation of bimetallic catalyst used for H2O2 synthesis.

Details

ISSN :
21555435
Volume :
7
Database :
OpenAIRE
Journal :
ACS Catalysis
Accession number :
edsair.doi.dedup.....34b778e2667c4acb3bedfb68af841133