Back to Search
Start Over
Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator
- Source :
- AIMS Mathematics, Vol 7, Iss 2, Pp 2123-2141 (2022)
- Publication Year :
- 2022
- Publisher :
- American Institute of Mathematical Sciences (AIMS), 2022.
-
Abstract
- We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping $ \Upsilon $ possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.
- Subjects :
- convex function
atangana-baleanu fractional operators
Pure mathematics
Hermite polynomials
General Mathematics
jensen-mercer inequality
Mathematics::Classical Analysis and ODEs
Regular polygon
Type (model theory)
q-digamma function
Hadamard transform
Special functions
QA1-939
Differentiable function
Convex function
Mathematics
Kernel (category theory)
Subjects
Details
- ISSN :
- 24736988
- Volume :
- 7
- Database :
- OpenAIRE
- Journal :
- AIMS Mathematics
- Accession number :
- edsair.doi.dedup.....349f375b53adfce91155720bb798127a
- Full Text :
- https://doi.org/10.3934/math.2022121