Back to Search Start Over

Genome-wide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip

Authors :
Yuliaxis Ramayo-Caldas
Anna Castelló
M. Carmen Rodríguez
Josep María Folch
Noelia Ibáñez-Escriche
Luis Silió
Dafne Pérez-Montarelo
José L. Noguera
Ana Isabel Fernández
Carmen Barragán
Fernández, Ana I
Departamento de Mejora Genética Animal
Instituto Nacional de Investigaciones Agronomicas
Universitat Autònoma de Barcelona (UAB)
Institute of Agrifood Research and Technology (IRTA)
Centre for Research in Agricultural Genomics (CRAG)
Source :
BMC Genetics, Vol 13, Iss 1, p 41 (2012), BMC genetics (13), 1-11. (2012), BMC Genetics, BMC Genetics, BioMed Central, 2012, 13, pp.1-11. ⟨10.1186/1471-2156-13-41⟩, Digital.CSIC. Repositorio Institucional del CSIC, instname, RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, Repositorio de Resultados de Investigación del INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, INIA: Repositorio de Resultados de Investigación del INIA
Publication Year :
2012
Publisher :
BioMed Central, 2012.

Abstract

BackgroundThe traditional strategy to map QTL is to use linkage analysis employing a limited number of markers. These analyses report wide QTL confidence intervals, making very difficult to identify the gene and polymorphisms underlying the QTL effects. The arrival of genome-wide panels of SNPs makes available thousands of markers increasing the information content and therefore the likelihood of detecting and fine mapping QTL regions. The aims of the current study are to confirm previous QTL regions for growth and body composition traits in different generations of an Iberian x Landrace intercross (IBMAP) and especially identify new ones with narrow confidence intervals by employing the PorcineSNP60 BeadChip in linkage analyses.ResultsThree generations (F3, Backcross 1 and Backcross 2) of the IBMAP and their related animals were genotyped with PorcineSNP60 BeadChip. A total of 8,417 SNPs equidistantly distributed across autosomes were selected after filtering by quality, position and frequency to perform the QTL scan. The joint and separate analyses of the different IBMAP generations allowed confirming QTL regions previously identified in chromosomes 4 and 6 as well as new ones mainly for backfat thickness in chromosomes 4, 5, 11, 14 and 17 and shoulder weight in chromosomes 1, 2, 9 and 13; and many other to the chromosome-wide signification level. In addition, most of the detected QTLs displayed narrow confidence intervals, making easier the selection of positional candidate genes.ConclusionsThe use of higher density of markers has allowed to confirm results obtained in previous QTL scans carried out with microsatellites. Moreover several new QTL regions have been now identified in regions probably not covered by markers in previous scans, most of these QTLs displayed narrow confidence intervals. Finally, prominent putative biological and positional candidate genes underlying those QTL effects are listed based on recent porcine genome annotation.<br />This work was funded by MICINN projects AGL2008-04818-C03/GAN and CSD2007-00036. DPM was funded by a FPI Ph.D grant from the Spanish Ministerio de Educación (BES-2009-025417). YR was funded by a FPU Ph.D grant from the Spanish Ministerio de Educación (AP2008-01450).

Details

Language :
English
ISSN :
14712156
Database :
OpenAIRE
Journal :
BMC Genetics, Vol 13, Iss 1, p 41 (2012), BMC genetics (13), 1-11. (2012), BMC Genetics, BMC Genetics, BioMed Central, 2012, 13, pp.1-11. ⟨10.1186/1471-2156-13-41⟩, Digital.CSIC. Repositorio Institucional del CSIC, instname, RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, Repositorio de Resultados de Investigación del INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, INIA: Repositorio de Resultados de Investigación del INIA
Accession number :
edsair.doi.dedup.....349b4f0b43be1e30c9463f0de690067d
Full Text :
https://doi.org/10.1186/1471-2156-13-41⟩