Back to Search
Start Over
The Poisson Problem for the Exterior Derivative Operator with Dirichlet Boundary Condition on Nonsmooth Domains
- Source :
- Communications on Pure and Applied Mathematics, Communications on Pure and Applied Mathematics, Wiley, 2008, 7 (6), pp.1295-1333. ⟨10.3934/cpaa.2008.7.1295⟩, Communications on Pure and Applied Mathematics, 2008, 7 (6), pp.1295-1333. ⟨10.3934/cpaa.2008.7.1295⟩
- Publication Year :
- 2008
- Publisher :
- HAL CCSD, 2008.
-
Abstract
- International audience; We formulate and solve the Poisson problem for the exterior derivative operator with Dirichlet boundary condition in Lipschitz domains, of arbitrary topology, for data in Besov and Triebel-Lizorkin spaces.
- Subjects :
- Divergence equation
Triebel-Lizorkin spaces
Mathematics::Analysis of PDEs
Mathematics::Classical Analysis and ODEs
[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]
01 natural sciences
Elliptic boundary value problem
Exterior derivative
symbols.namesake
Besov
Dirichlet's principle
Neumann boundary condition
58J32, 35F15
58J10, 35N10
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Boundary value problem
Poisson problem
0101 mathematics
Mathematics
Mathematics::Functional Analysis
Applied Mathematics
010102 general mathematics
Mathematical analysis
General Medicine
Dirichlet's energy
Mixed boundary condition
Differential forms
Lipschitz domain
010101 applied mathematics
Sobolev
Dirichlet boundary condition
Dirichlet condition
symbols
Cauchy boundary condition
Analysis
Subjects
Details
- Language :
- English
- ISSN :
- 00103640 and 10970312
- Database :
- OpenAIRE
- Journal :
- Communications on Pure and Applied Mathematics, Communications on Pure and Applied Mathematics, Wiley, 2008, 7 (6), pp.1295-1333. ⟨10.3934/cpaa.2008.7.1295⟩, Communications on Pure and Applied Mathematics, 2008, 7 (6), pp.1295-1333. ⟨10.3934/cpaa.2008.7.1295⟩
- Accession number :
- edsair.doi.dedup.....347bee8eddfa1e7e18a3399f0255a0e6
- Full Text :
- https://doi.org/10.3934/cpaa.2008.7.1295⟩