Back to Search Start Over

Large Deviations for Quasi-Arithmetically Self-Normalized Random Variables

Authors :
Marguerite Zani
Jean-Marie Aubry
Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA)
Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
Zani, Marguerite
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM)
Source :
ESAIM: Probability and Statistics, ESAIM: Probability and Statistics, EDP Sciences, 2013, 17 (1), pp.1--12
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

We introduce a family of convex (concave) functions called sup (inf) of powers, which are used as generator functions for a special type of quasi-arithmetic means. Using these means, we generalize the large deviation result on self-normalized statistics that was obtained in the homogeneous case by [Q.-M. Shao, Self-normalized large deviations. Ann. Probab. 25 (1997) 285–328]. Furthermore, in the homogenous case, we derive the Bahadur exact slope for tests using self-normalized statistics.

Details

Language :
English
ISSN :
12928100 and 12623318
Database :
OpenAIRE
Journal :
ESAIM: Probability and Statistics, ESAIM: Probability and Statistics, EDP Sciences, 2013, 17 (1), pp.1--12
Accession number :
edsair.doi.dedup.....3466583bf98c942040441d9cb7933d36