Back to Search Start Over

Improving memory-based user collaborative filtering with evolutionary multi-objective optimization

Authors :
Sabeur Aridhi
Wajdi Dhifli
Nour El Islem Karabadji
Hassina Seridi
Samia Beldjoudi
Laboratoire de gestion electronique de documents [Annaba] ( LabGED )
Université Badji Mokhtar - Annaba [Annaba] ( UBMA )
Badji Mokhtar University
Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes ( LIMOS )
Sigma CLERMONT ( Sigma CLERMONT ) -Université Clermont Auvergne ( UCA ) -Centre National de la Recherche Scientifique ( CNRS )
Laboratoire de Gestion Electronique de Document [Annaba] (LabGED)
Université Badji Mokhtar Annaba (UBMA)
Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de gestion electronique de documents [Annaba] (LabGED)
Université Badji Mokhtar - Annaba [Annaba] (UBMA)
Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])
Source :
Expert Systems with Applications, Expert Systems with Applications, Elsevier, 2018, 98, pp.153-165. 〈10.1016/j.eswa.2018.01.015〉, Expert Systems with Applications, 2018, 98, pp.153-165. ⟨10.1016/j.eswa.2018.01.015⟩, Expert Systems with Applications, Elsevier, 2018, 98, pp.153-165. ⟨10.1016/j.eswa.2018.01.015⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

The primary task of a memory-based collaborative filtering (CF) recommendation system is to select a group of nearest (similar) user neighbors for an active user. Traditional memory-based CF schemes tend to only focus on improving as much as possible the accuracy by recommending familiar items (i.e., popular items over the group). Yet, this may reduce the number of items that could be recommended and consequently weakens the chances of recommending novel items. To address this problem, it is desirable to consider recommendation coverage when selecting the appropriate group. This could help in simultaneously making both accurate and diverse recommendations. In this paper, we propose to focus mainly on the growing of the large search space of users’ profiles and to use an evolutionary multi-objective optimization-based recommendation system to pull up a group of profiles that maximizes both similarity with the active user and diversity between its members. In such manner, the recommendation system will provide high performances in terms of both accuracy and diversity. The experimental results on the Movielens benchmark and on a real-world insurance dataset show the efficiency of our approach in terms of accuracy and diversity compared to state-of-the-art competitors.

Details

Language :
English
ISSN :
09574174
Database :
OpenAIRE
Journal :
Expert Systems with Applications, Expert Systems with Applications, Elsevier, 2018, 98, pp.153-165. 〈10.1016/j.eswa.2018.01.015〉, Expert Systems with Applications, 2018, 98, pp.153-165. ⟨10.1016/j.eswa.2018.01.015⟩, Expert Systems with Applications, Elsevier, 2018, 98, pp.153-165. ⟨10.1016/j.eswa.2018.01.015⟩
Accession number :
edsair.doi.dedup.....345c7b11ab15de504936c229ae02103f
Full Text :
https://doi.org/10.1016/j.eswa.2018.01.015〉