Back to Search Start Over

Collaborative, Multidisciplinary Evaluation of Cancer Variants Through Virtual Molecular Tumor Boards Informs Local Clinical Practices

Authors :
Samir Gupta
Subha Madhavan
Ian F. G. King
Shruti Rao
Matthew McCoy
Beth A. Pitel
Ben Ho Park
James L. Chen
Debyani Chakravarty
Peter K. Rogan
Malachi Griffith
Simina M. Boca
Obi L. Griffith
Alex H. Wagner
Jeremy L. Warner
Source :
Biochemistry Publications, JCO Clinical Cancer Informatics
Publication Year :
2020
Publisher :
Scholarship@Western, 2020.

Abstract

PURPOSE The cancer research community is constantly evolving to better understand tumor biology, disease etiology, risk stratification, and pathways to novel treatments. Yet the clinical cancer genomics field has been hindered by redundant efforts to meaningfully collect and interpret disparate data types from multiple high-throughput modalities and integrate into clinical care processes. Bespoke data models, knowledgebases, and one-off customized resources for data analysis often lack adequate governance and quality control needed for these resources to be clinical grade. Many informatics efforts focused on genomic interpretation resources for neoplasms are underway to support data collection, deposition, curation, harmonization, integration, and analytics to support case review and treatment planning. METHODS In this review, we evaluate and summarize the landscape of available tools, resources, and evidence used in the evaluation of somatic and germline tumor variants within the context of molecular tumor boards. RESULTS Molecular tumor boards (MTBs) are collaborative efforts of multidisciplinary cancer experts equipped with genomic interpretation resources to aid in the delivery of accurate and timely clinical interpretations of complex genomic results for each patient, within an institution or hospital network. Virtual MTBs (VMTBs) provide an online forum for collaborative governance, provenance, and information sharing between experts outside a given hospital network with the potential to enhance MTB discussions. Knowledge sharing in VMTBs and communication with guideline-developing organizations can lead to progress evidenced by data harmonization across resources, crowd-sourced and expert-curated genomic assertions, and a more informed and explainable usage of artificial intelligence. CONCLUSION Advances in cancer genomics interpretation aid in better patient and disease classification, more streamlined identification of relevant literature, and a more thorough review of available treatments and predicted patient outcomes.

Details

Database :
OpenAIRE
Journal :
Biochemistry Publications, JCO Clinical Cancer Informatics
Accession number :
edsair.doi.dedup.....344f48e6ed800dc381f71d31f82adda2