Back to Search Start Over

Mechanistic evaluation of gastro-protective effects of KangFuXinYe on indomethacin-induced gastric damage in rats

Authors :
Qi-Juan Li
Hui-Ling Hu
Yong-Xiang Gao
Qiao Liu
Yu Xie
Zhan-Guo Wang
Source :
Chinese Journal of Natural Medicines. 18:47-56
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

KangFuXinYe (KFX), the ethanol extract of the dried whole body of Periplaneta americana, is a well-known important Chinese medicine preparation that has been used to treat digestive diseases such as gastric ulcers for many years in China. However, its therapeutic effect and mechanism are not yet well understood. Thus, the aim of this study was to investigate the gastro-protective effects of KangFuXinYe (KFX) in indomethacin-induced gastric damage. Rats were randomly divided into six groups as follows: control, treated with indomethacin (35 mg·kg-1), different dosages of KFX (2.57, 5.14 and 10.28 mL·kg-1, respectively) plus indomethacin, and sucralfate (1.71 mL·kg-1) plus indomethacin. After treatment, rat serum, stomach and gastric homogenates were collected for biochemical tests and examination of histopathology firstly. Rat serum was further used for metabolomics analysis to research possible mechanisms. Our results showed that KFX treatment alleviated indomethacin-induced histopathologic damage in rat gastric mucosa. Meanwhile, its treatment significantly increased cyclooxygenase-1 (COX-1), prostaglandin E2 (PGE2) and epidermal growth factor (EGF) levels in rat serum and gastric mucosa. Moreover, KFX decreased cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) levels. Nine metabolites were identified which intensities significantly changed in gastric damage rats, including 5-hydroxyindoleacetic acid, indoxylsulfuric acid, indolelactic acid, 4-hydroxyindole, pantothenic acid, isobutyryl carnitine, 3-methyl-2-oxovaleric acid, sphingosine 1-phosphate, and indometacin. These metabolic deviations came to closer to normal levels after KFX intervention. The results indicate that KFX (10.28 mL·kg-1) exerts protective effects on indomethacin-induced gastric damage by possible mechanisms of action (regulating tryptophan metabolism, protecting the mitochondria, and adjusting lipid metabolism, and reducing excessive indomethacin).

Details

ISSN :
18755364
Volume :
18
Database :
OpenAIRE
Journal :
Chinese Journal of Natural Medicines
Accession number :
edsair.doi.dedup.....3440c853c4c2ea2b6b3684723bb1d08f
Full Text :
https://doi.org/10.1016/s1875-5364(20)30004-2