Back to Search Start Over

Monte Carlo Aggregation Code (MCAC) Part 1: Fundamentals

Authors :
José Morán
Alexandre Poux
Jérôme Yon
Complexe de recherche interprofessionnel en aérothermochimie (CORIA)
Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)
ANR-18-CE05-0015,ASTORIA,Prise en compte de la morphologie des suies dans l'évaluation du rayonnement thermique des flammes et pour leurs diagnostics optiques dans des systèmes complexes(2018)
Source :
Journal of Colloid and Interface Science, Journal of Colloid and Interface Science, Elsevier, 2020, 569, pp.184-194. ⟨10.1016/j.jcis.2020.02.039⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

The application of Monte Carlo methods to simulate the agglomeration of suspended nanoparticles is currently limited to specific agglomeration regimes with reduced accuracy in terms of the particle's physical residence time. The definition of specific particles persistent distance, its corresponding time step and subsequent probabilities for particle displacements may improve the accuracy of this method. To solve these issues, a new persistent distance and its corresponding time step based on Langevin dynamics simulations are introduced. Additionally, a probability of particle displacements, not restricted to a specific agglomeration regime, is introduced. All the modifications are validated by comparison with Langevin dynamics simulations. Finally, the above mentioned modifications considerably improve the accuracy of Monte Carlo methods to predict the dynamics and agglomeration of suspended nanoparticles.

Details

Language :
English
ISSN :
00219797 and 10957103
Database :
OpenAIRE
Journal :
Journal of Colloid and Interface Science, Journal of Colloid and Interface Science, Elsevier, 2020, 569, pp.184-194. ⟨10.1016/j.jcis.2020.02.039⟩
Accession number :
edsair.doi.dedup.....343554b8ee5f2dd386557469890acdd1
Full Text :
https://doi.org/10.1016/j.jcis.2020.02.039⟩