Back to Search Start Over

The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure

Authors :
Franck Duong
Ian Collinson
Véronique Besson
Pascal Bessonneau
Source :
The EMBO Journal. 21:995-1003
Publication Year :
2002
Publisher :
Wiley, 2002.

Abstract

Escherichia coli preprotein translocase comprises a membrane-embedded trimeric complex of SecY, SecE and SecG. Previous studies have shown that this complex forms ring-like assemblies, which are thought to represent the preprotein translocation channel across the membrane. We have analyzed the functional state and the quaternary structure of the SecYEG translocase by employing cross-linking and blue native gel electrophoresis. The results show that the SecYEG monomer is a highly dynamic structure, spontaneously and reversibly associating into dimers. SecG-dependent tetramers and higher order SecYEG multimers can also exist in the membrane, but these structures form at high SecYEG concentration or upon overproduction of the complex only. The translocation process does not affect the oligomeric state of the translocase and arrested preproteins can be trapped with SecYEG or SecYE dimers. Dissociation of the dimer into a monomer by detergent induces release of the trapped preprotein. These results provide direct evidence that preproteins cross the bacterial membrane, associated with a translocation channel formed by a dimer of SecYEG.

Details

ISSN :
14602075
Volume :
21
Database :
OpenAIRE
Journal :
The EMBO Journal
Accession number :
edsair.doi.dedup.....3412f565a8e11b6e0fb02793154ee218
Full Text :
https://doi.org/10.1093/emboj/21.5.995