Back to Search
Start Over
Field Extensions and Kronecker’s Construction
- Source :
- Formalized Mathematics, Vol 27, Iss 3, Pp 229-235 (2019)
- Publication Year :
- 2019
- Publisher :
- Sciendo, 2019.
-
Abstract
- Summary This is the fourth part of a four-article series containing a Mizar [3], [2], [1] formalization of Kronecker’s construction about roots of polynomials in field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there exists a field extension E of F such that p has a root over E. The formalization follows Kronecker’s classical proof using F [X]/ as the desired field extension E [6], [4], [5]. In the first part we show that an irreducible polynomial p ∈ F [X]\F has a root over F [X]/. Note, however, that this statement cannot be true in a rigid formal sense: We do not have F ⊆ F [X]/ < p > as sets, so F is not a subfield of F [X]/, and hence formally p is not even a polynomial over F [X]/ < p >. Consequently, we translate p along the canonical monomorphism ϕ: F → F [X]/ and show that the translated polynomial ϕ (p) has a root over F [X]/. Because F is not a subfield of F [X]/ we construct in the second part the field (E \ ϕF)∪F for a given monomorphism ϕ: F → E and show that this field both is isomorphic to F and includes F as a subfield. In the literature this part of the proof usually consists of saying that “one can identify F with its image ϕF in F [X]/ and therefore consider F as a subfield of F [X]/”. Interestingly, to do so we need to assume that F ∩ E = ∅, in particular Kronecker’s construction can be formalized for fields F with F ∩ F [X] = ∅. Surprisingly, as we show in the third part, this condition is not automatically true for arbitrary fields F : With the exception of ℤ2 we construct for every field F an isomorphic copy F′ of F with F′ ∩ F′ [X] ≠ ∅. We also prove that for Mizar’s representations of ℤ n , ℚ and ℝ we have ℤ n ∩ ℤ n [X] = ∅, ℚ ∩ ℚ[X] = ∅ and ℝ ∩ ℝ[X] = ∅, respectively. In this fourth part we finally define field extensions: E is a field extension of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets, and thus a polynomial p over F is also a polynomial over E. We then apply the construction of the second part to F [X]/ with the canonical monomorphism ϕ: F → F [X]/. Together with the first part this gives – for fields F with F ∩ F [X] = ∅ – a field extension E of F in which p ∈ F [X]\F has a root.
Details
- Language :
- English
- ISSN :
- 18989934 and 14262630
- Volume :
- 27
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Formalized Mathematics
- Accession number :
- edsair.doi.dedup.....34114bb20224ac6cadcfbd0563fcba0d