Back to Search Start Over

Galactose-Based Amphiphilic Block Copolymers: Synthesis, Micellization, and Bioapplication

Authors :
Chun-Yan Hong
Cai-Yuan Pan
Ying Wang
Source :
Biomacromolecules. 14:1444-1451
Publication Year :
2013
Publisher :
American Chemical Society (ACS), 2013.

Abstract

Redox-responsive amphiphilic diblock copolymers, poly(6-O-methacryloyl-D-galactopyranose-co-2-(N,N-dimethylaminoethyl) methacrylate)-b-poly(pyridyl disulfide ethyl methylacrylate) (P(MAGP-co-DMAEMA)-b-PPDSMA) were obtained by deprotection of poly((6-O-methacryloyl-1,2:3,4-di-O-isopropylidene-D-galactopyranose)-co-DMAEMA)-b-PPDSMA [P(MAlpGP-co-DMAEMA)-b-PPDSMA], which were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of PDSMA using P(MAlpGP-co-DMAEMA) as macro-RAFT agent. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies showed that diblock copolymers P(MAGP-co-DMAEMA)-b-PPDSMA can self-assemble into micelles. Doxorubicin (DOX) could be encapsulated by P(MAGP-co-DMAEMA)-b-PPDSMA upon micellization and released upon adding glutathione (GSH) into the micelle solution. The galactose functional groups in the PMAGP block had specific interaction with HepG2 cells, and P(MAGP-co-DMAEMA)-b-PPDSMA can act as gene delivery vehicle. So, this kind of polymer has potential applications in hepatoma-targeting drug and gene delivery and biodetection.

Details

ISSN :
15264602 and 15257797
Volume :
14
Database :
OpenAIRE
Journal :
Biomacromolecules
Accession number :
edsair.doi.dedup.....3400313c4a40b75fbcab5940dee67e63
Full Text :
https://doi.org/10.1021/bm4003078