Back to Search
Start Over
Controls over δ44/40Ca and Sr/Ca variations in coccoliths: New perspectives from laboratory cultures and cellular models
- Source :
- Earth and Planetary Science Letters, Earth and Planetary Science Letters, Elsevier, 2018, 481, pp.48-60. ⟨10.1016/j.epsl.2017.10.013⟩
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Coccoliths comprise a major fraction of the global carbonate sink. Therefore, changes in coccolithophores' Ca isotopic fractionation could affect seawater Ca isotopic composition, affecting interpretations of the global Ca cycle and related changes in seawater chemistry and climate. Despite this, a quantitative interpretation of coccolith Ca isotopic fractionation and a clear understanding of the mechanisms driving it are not yet available. Here, we address this gap in knowledge by developing a simple model (CaSri–Co) to track coccolith Ca isotopic fractionation during cellular Ca uptake and allocation to calcification. We then apply it to published and new δ44/40Ca and Sr/Ca data of cultured coccolithophores of the species Emiliania huxleyi and Gephyrocapsa oceanica. We identify changes in calcification rates, Ca retention efficiency and solvation–desolvation rates as major drivers of the Ca isotopic fractionation and Sr/Ca variations observed in cultures. Higher calcification rates, higher Ca retention efficiencies and lower solvation–desolvation rates increase both coccolith Ca isotopic fractionation and Sr/Ca. Coccolith Ca isotopic fractionation is most sensitive to changes in solvation–desolvation rates. Changes in Ca retention efficiency may be a major driver of coccolith Sr/Ca variations in cultures. We suggest that substantial changes in the water structure strength caused by past changes in temperature could have induced significant changes in coccolithophores' Ca isotopic fractionation, potentially having some influence on seawater Ca isotopic composition. We also suggest a potential effect on Ca isotopic fractionation via modification of the solvation environment through cellular exudates, a hypothesis that remains to be tested.
- Subjects :
- 010504 meteorology & atmospheric sciences
[SDE.MCG]Environmental Sciences/Global Changes
Fractionation
010502 geochemistry & geophysics
01 natural sciences
Coccolith
Isotopes of calcium
Paleontology
chemistry.chemical_compound
Geochemistry and Petrology
Earth and Planetary Sciences (miscellaneous)
14. Life underwater
Gephyrocapsa oceanica
skin and connective tissue diseases
ComputingMilieux_MISCELLANEOUS
0105 earth and related environmental sciences
Emiliania huxleyi
biology
biology.organism_classification
Retention efficiency
Geophysics
chemistry
13. Climate action
Space and Planetary Science
Environmental chemistry
[SDE]Environmental Sciences
Carbonate
Seawater
sense organs
Geology
Subjects
Details
- ISSN :
- 0012821X
- Volume :
- 481
- Database :
- OpenAIRE
- Journal :
- Earth and Planetary Science Letters
- Accession number :
- edsair.doi.dedup.....34001cda844c15ead98dc6af6b223136
- Full Text :
- https://doi.org/10.1016/j.epsl.2017.10.013