Back to Search Start Over

Duality-based asymptotic-preserving method for highly anisotropic diffusion equations

Authors :
Alexei Lozinski
Fabrice Deluzet
Claudia Negulescu
Jacek Narski
Pierre Degond
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Communications in Mathematical Sciences, Communications in Mathematical Sciences, International Press, 2012, 10 (1), pp.1-31. ⟨10.4310/CMS.2012.v10.n1.a2⟩, Communications in Mathematical Sciences, 2012, 10 (1), pp.1-31. ⟨10.4310/CMS.2012.v10.n1.a2⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

The present paper introduces an efficient and accurate numerical scheme for the solution of a highly anisotropic elliptic equation, the anisotropy direction being given by a variable vector field. This scheme is based on an asymptotic preserving reformulation of the original system, permitting an accurate resolution independently of the anisotropy strength and without the need of a mesh adapted to this anisotropy. The counterpart of this original procedure is the larger system size, enlarged by adding auxiliary variables and Lagrange multipliers. This Asymptotic-Preserving method generalizes the method investigated in a previous paper [arXiv:0903.4984v2] to the case of an arbitrary anisotropy direction field.

Details

Language :
English
ISSN :
15396746 and 19450796
Database :
OpenAIRE
Journal :
Communications in Mathematical Sciences, Communications in Mathematical Sciences, International Press, 2012, 10 (1), pp.1-31. ⟨10.4310/CMS.2012.v10.n1.a2⟩, Communications in Mathematical Sciences, 2012, 10 (1), pp.1-31. ⟨10.4310/CMS.2012.v10.n1.a2⟩
Accession number :
edsair.doi.dedup.....33dc25d1435d0b9d4deb4344f1cd6ac3