Back to Search Start Over

Relationship between the Ozone and Water Vapor columns on Mars as Observed by SPICAM and Calculated by a Global Climate Model

Authors :
J. L. Bertaux
Olivia Venot
Anna Fedorova
Alexander Trokhimovskiy
Oleg Korablev
Gaetan Lacombe
Lucio Baggio
Franck Montmessin
Yves Bénilan
François Forget
Ehouarn Millour
Franck Lefèvre
Anni Määttänen
PLANETO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Space Research Institute of the Russian Academy of Sciences (IKI)
Russian Academy of Sciences [Moscow] (RAS)
Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583))
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Source :
Journal of Geophysical Research. Planets, Journal of Geophysical Research. Planets, Wiley-Blackwell, 2021, 126 (4), pp.e2021JE006838. ⟨10.1029/2021JE006838⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Ozone (O3) in the atmosphere of Mars is produced following the photolysis of CO2 and is readily destroyed by the hydrogen radicals (HOx) released by the photolysis and oxidation of water vapor. As a result, an anti‐correlation between ozone and water vapor is expected. We describe here the O3‐H2O relationship derived from four Martian years of simultaneous observations by the SPICAM spectrometer onboard the Mars Express spacecraft. A distinct anti‐correlation is found at high latitudes, where the O3 column varies roughly with the ‐0.6 power of the H2O column. The O3 and H2O columns are uncorrelated at low latitudes. To evaluate our quantitative understanding of the Martian photochemistry, the observed O3‐H2O relationship is then compared to that predicted by a global climate model with photochemistry. For identical model and observed abundances of H2O, the model underpredicts observed ozone by about a factor of two relative to SPICAM when using the currently recommended gas‐phase chemistry. Sensitivity studies employing low‐temperature CO2 absorption cross‐sections, or adjusted kinetics rates, do not solve this bias. Taking into account potential heterogeneous processes of HOx loss on clouds leads to a significant improvement, but only at high northern latitudes. More broadly, the modeled ozone deficits suggest that the HOx‐catalyzed photochemistry is too efficient in our simulations. This problem is consistent with the long‐standing underestimation of CO in Mars photochemical models, and may be related to similar difficulties in modeling O3 and HOx in the Earth’s upper stratosphere and mesosphere.

Details

Language :
English
ISSN :
21699097 and 21699100
Database :
OpenAIRE
Journal :
Journal of Geophysical Research. Planets, Journal of Geophysical Research. Planets, Wiley-Blackwell, 2021, 126 (4), pp.e2021JE006838. ⟨10.1029/2021JE006838⟩
Accession number :
edsair.doi.dedup.....33a3679fc822a1b45379cbe024f7a183