Back to Search Start Over

Examination of strangeness instabilities and effects of strange meson couplings in dense strange hadronic matter and compact stars

Authors :
Francesca Gulminelli
James R. Torres
Débora P. Menezes
Universidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] (UFSC)
Laboratoire de physique corpusculaire de Caen (LPCC)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
Source :
Physical Review C, Physical Review C, American Physical Society, 2017, 95, pp.025201. ⟨10.1103/PhysRevC.95.025201⟩
Publication Year :
2017
Publisher :
American Physical Society (APS), 2017.

Abstract

Background : The emergence of hyperon degrees of freedom in neutron star matter has been associated to first order phase transitions in some phenomenological models, but conclusions on the possible physical existence of an instability in the strangeness sector are strongly model dependent. Purpose : The purpose of the present study is to assess whether strangeness instabilities are related to specific values of the largely unconstrained hyperon interactions, and to study the effect of the strange meson couplings on phenomenological properties of neutron stars and supernova matter, once these latter are fixed to fulfill the constraints imposed by hypernuclear data. Method : We consider a phenomenological RMF model sufficiently simple to allow a complete exploration of the parameter space. Results : We show that no instability at supersaturation density exists for the RMF model, as long as the parameter space is constrained by basic physical requirements. This is at variance with a non-relativistic functional, with a functional behavior fitted through ab-initio calculations. Once the study is extended to include the full octet, we show that the parameter space allows reasonable radii for canonical neutron stars as well as massive stars above two-solar mass, together with an important strangeness content of the order of 30\%, slightly decreasing with increasing entropy, even in the absence of a strangeness driven phase transition. Conclusions : We conclude that the hyperon content of neutron stars and supernova matter cannot be established with present constraints, and is essentially governed by the unconstrained coupling to the strange isoscalar meson.<br />13 pages, 8 figures

Details

ISSN :
24699993 and 24699985
Volume :
95
Database :
OpenAIRE
Journal :
Physical Review C
Accession number :
edsair.doi.dedup.....33a06f43d837d76515c6880bfed2cd47