Back to Search Start Over

DETECTING HOTSPOTS FROM TAXI TRAJECTORY DATA USING SPATIAL CLUSTER ANALYSIS

Authors :
C. K. Liu
Pengxiang Zhao
Yixiang Chen
Kun Qin
Q. Zhou
Source :
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol II-4/W2, Pp 131-135 (2015)
Publication Year :
2015
Publisher :
Copernicus Publications, 2015.

Abstract

A method of trajectory clustering based on decision graph and data field is proposed in this paper. The method utilizes data field to describe spatial distribution of trajectory points, and uses decision graph to discover cluster centres. It can automatically determine cluster parameters and is suitable to trajectory clustering. The method is applied to trajectory clustering on taxi trajectory data, which are on the holiday (May 1st, 2014), weekday (Wednesday, May 7th, 2014) and weekend (Saturday, May 10th, 2014) respectively, in Wuhan City, China. The hotspots in four hours (8:00-9:00, 12:00-13:00, 18:00-19:00 and 23:00-24:00) for three days are discovered and visualized in heat maps. In the future, we will further research the spatiotemporal distribution and laws of these hotspots, and use more data to carry out the experiments.

Details

Language :
English
ISSN :
21949050 and 21949042
Database :
OpenAIRE
Journal :
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Accession number :
edsair.doi.dedup.....338feca35b84ec38d4d7ff397fa33d38