Back to Search
Start Over
Modulation of neurotransmitter release via histamine H3 heteroreceptors
- Source :
- Fundamentalclinical pharmacology. 8(2)
- Publication Year :
- 1994
-
Abstract
- Presynaptic H3 receptors occur on histaminergic neurones of the CNS (autoreceptors) and on non-histaminergic neurones of the central and autonomic nervous system (heteroreceptors). H3 heteroreceptors, most probably located on the postganglionic sympathetic nerve fibres innervating the resistance vessels and the heart, have been identified in the model of the pithed rat. Furthermore, we could show in superfusion experiments that H3 heteroreceptors also occur on the sympathetic neurones supplying the human saphenous vein and the vasculature of the pig retina and on the serotoninergic, dopaminergic and noradrenergic neurones in the brain of various mammalian species, including man. The effects of three recently described H3 receptor ligands were studied in superfused mouse brain cortex slices. The potency of the novel H3 receptor agonist imetit exceeded that of R-(-)-alpha-methylhistamine (the reference H3 receptor agonist) by one log unit and that of histamine by almost two log units. Clobenpropit was shown to be a competitive H3 receptor antagonist, exhibiting a pA2 as high as 9.6 (exceeding the pA2 of the reference H3 receptor antagonist thioperamide by one log unit). The irreversible antagonism of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was also studied. Interactions of the H3 heteroreceptor with the dopamine autoreceptor in mouse striatal slices and the alpha 2-autoreceptor in mouse brain cortex slices could be demonstrated. Activation of alpha 2-autoreceptors decreases the H3 receptor-mediated effect. Blockade of alpha 2-autoreceptors increases the H3 receptor-mediated effect only if the alpha 2-autoreceptors are simultaneously activated by endogenous noradrenaline. The H3 receptor-mediated inhibition of noradrenaline release in mouse brain cortex slices was attenuated by the K+ channel blocker tetraethylammonium but this attenuation was abolished by reduction of the Ca2+ concentration in the medium (to compensate for the facilitatory effect of tetraethylammonium on noradrenaline release). Accordingly, we assume that the H3 receptors are not coupled to voltage-sensitive K+ channels. Pertussis toxin and N-ethylmaleimide attenuated the H3 receptor-mediated effect in the mouse brain cortex, suggesting that the H3 receptors are coupled to a G protein (eg Gi or Go). However, negative coupling to an adenylate cyclase does not appear to exist since an H3 receptor-mediated inhibition of cAMP accumulation was not obtained in mouse brain cortex membranes. H3 receptor ligands are currently undergoing clinical testing and might become new remedies for the treatment of disease of the gastrointestinal and bronchial system and the CNS.
- Subjects :
- Agonist
medicine.medical_specialty
Clobenpropit
medicine.drug_class
Biology
Heteroreceptor
Imetit
Cardiovascular System
Histamine Agonists
chemistry.chemical_compound
Mice
Norepinephrine
Species Specificity
Internal medicine
medicine
Animals
Humans
Receptors, Histamine H3
Pharmacology (medical)
Drug Interactions
Autoreceptors
Pharmacology
Thioperamide
Brain
Electrophysiology
Endocrinology
chemistry
Autoreceptor
Histamine H3 receptor
H3 receptor antagonist
medicine.drug
Subjects
Details
- ISSN :
- 07673981
- Volume :
- 8
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Fundamentalclinical pharmacology
- Accession number :
- edsair.doi.dedup.....337d89e62e20f8fcc5fee454ef8997d5