Back to Search
Start Over
On Slant Submanifolds Of Neutral Kaehler Manifolds
- Source :
- idUS. Depósito de Investigación de la Universidad de Sevilla, instname, Scopus-Elsevier, Taiwanese J. Math. 14, no. 2 (2010), 561-584
- Publication Year :
- 2010
- Publisher :
- Aperta, 2010.
-
Abstract
- An indefinite Riemannian manifold is called neutral it its index is equal to one half of its dimension and an indefinite Kaehler manifold is called neutral Kaehler if its complex index is equal to the half of its complex dimension. In the first part of this article, we extend the notion of slant surfaces in Lorentzian Kaehler surfaces to slant submanifolds in neutral Kaehler manifolds; moreover, we characterize slant submanifolds with parallel canonical structures. By applying the results obtained in the first part we completely classify slant surfaces with parallel mean curvature vector and minimal slant surfaces in the Lorentzian complex plane in the second part of this article.
- Subjects :
- Immersions
Neutral Kaehler manifold
General Mathematics
53C40
Kähler manifold
Complex dimension
53C42
Slant submanifold
53B25
Dimension (vector space)
Slant Submanifold
Kaehler Manifold
Sasakian Space Form
Neutral complex space form
Mathematics::Symplectic Geometry
Mathematics
Minimal surface
Mean curvature
Mathematics::Complex Variables
Complex-space-forms
S-manifolds
Mathematical analysis
Mathematics::History and Overview
Lorentzian complex plane
Riemannian manifold
Computer Science::Computer Vision and Pattern Recognition
Mathematics::Differential Geometry
Minimal-surfaces
Complex plane
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- idUS. Depósito de Investigación de la Universidad de Sevilla, instname, Scopus-Elsevier, Taiwanese J. Math. 14, no. 2 (2010), 561-584
- Accession number :
- edsair.doi.dedup.....33730680f164d2829395a4a46129d4f5