Back to Search Start Over

The DNA-binding domain of the gene regulatory protein AreA extends beyond the minimal zinc-finger region conserved between GATA proteins

Authors :
Iain W. Manfield
Geoff Kneale
John R. Gittins
L.A. Reynolds
Source :
Biochimica et biophysica acta. 1493(3)
Publication Year :
2000

Abstract

The AreA protein of Aspergillus nidulans regulates the activity of over 100 genes involved in the utilisation of nitrogen, and has a limited region of homology with the vertebrate family of GATA proteins around a zinc finger (Zf) motif. A 66 amino acid (a.a.) residue fragment (Zf(66)) corresponding to the zinc finger, a 91 a.a fragment (Zf(91)) containing an additional 25 a.a. at the C-terminus, and a much larger 728 a.a. sequence (3'EX) corresponding to the 3'exon have been over-expressed as fusion proteins in E. coli and purified. The DNA-protein complexes formed by these proteins have been examined by gel retardation analysis. The 91 a.a. protein forms a discrete shifted species with a GATA-containing DNA fragment with high affinity (K(d)=0.15 nM), whereas the 66 a.a. protein has very low ( approximately microM) affinity for the same sequence. The results show that the region of AreA required for high affinity DNA binding extends beyond the zinc finger motif that is homologous to GATA-1, requiring in addition a region within the 25 a.a. sequence C-terminal to the zinc finger. Using hydroxyl radical and ethylation interference footprinting, the minimal Zinc finger protein (Zf(66)) shows no appreciable interference effects whereas Zf(91) shows much stronger interference effects, identical to those of the larger protein. These effects extend over sequences up to two nucleotides either side of the GATA site, and indicate contacts additional to those observed in the three-dimensional structure of the complex of the minimal zinc-finger protein with DNA. We suggest that these additional contacts are responsible for the enhanced DNA binding affinity of the extended zinc-finger protein Zf(91).

Details

ISSN :
00063002
Volume :
1493
Issue :
3
Database :
OpenAIRE
Journal :
Biochimica et biophysica acta
Accession number :
edsair.doi.dedup.....32f5adba98575aeb6397020132699420