Back to Search Start Over

Demodulation of Chaos Phase Modulation Spread Spectrum Signals Using Machine Learning Methods and Its Evaluation for Underwater Acoustic Communication

Authors :
Fan Yang
Chao Li
Franck Marzani
College of Engineering [Beijing]
China Agricultural University (CAU)
State Key Laboratory of Acoustics (Institute of Acoustics - Chinese Academy of Sciences) (SKLA)
University of Chinese Academy of Sciences [Beijing] (UCAS)
Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] (Le2i)
Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM)
Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)
CAS Pioneer Hundred Talents Program
Source :
Sensors, Sensors, MDPI, 2018, 18 (12), pp.4217. ⟨10.3390/s18124217⟩, Sensors (Basel, Switzerland), Sensors, Vol 18, Iss 12, p 4217 (2018), Volume 18, Issue 12
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; The chaos phase modulation sequences consist of complex sequences with a constant envelope, which has recently been used for direct-sequence spread spectrum underwater acoustic communication. It is considered an ideal spreading code for its benefits in terms of large code resource quantity, nice correlation characteristics and high security. However, demodulating this underwater communication signal is a challenging job due to complex underwater environments. This paper addresses this problem as a target classification task and conceives a machine learning-based demodulation scheme. The proposed solution is implemented and optimized on a multi-core center processing unit (CPU) platform, then evaluated with replay simulation datasets. In the experiments, time variation, multi-path effect, propagation loss and random noise were considered as distortions. According to the results, compared to the reference algorithms, our method has greater reliability with better temporal efficiency performance.Keywords

Details

Language :
English
ISSN :
14248220
Database :
OpenAIRE
Journal :
Sensors, Sensors, MDPI, 2018, 18 (12), pp.4217. ⟨10.3390/s18124217⟩, Sensors (Basel, Switzerland), Sensors, Vol 18, Iss 12, p 4217 (2018), Volume 18, Issue 12
Accession number :
edsair.doi.dedup.....32e86176e55b31d742337ef71e4e36b8
Full Text :
https://doi.org/10.3390/s18124217⟩