Back to Search Start Over

Analysis of common genetic variation and rare CNVs in the Australian Autism Biobank

Authors :
Alexis Harun
Gail A. Alvares
Chloe X. Yap
Feroza Khan
Leanne Wallace
Helen Holdsworth
Rachel Grove
Jian Zeng
Jolene Berry
Valsamma Eapen
Lauren P. Lawson
Jacob Gratten
Melanie Muniandy
Alaina Farrelly
Helen Heussler
Mira Levis Frenk
Jodie Leslie
Nisha E. Mathew
Andrew J. O. Whitehouse
Rachel Jellett
Maciej Trzaskowski
Cheryl Dissanayake
Tiana McLaren
Dominique Cleary
Anjali K. Henders
Peter M. Visscher
Anna A. E. Vinkhuyzen
Naomi R. Wray
Paul A. Dawson
Tian Lin
Yuanhao Yang
Claire Hafekost
Anne Masi
Michaela Nothard
Source :
Molecular Autism, Molecular Autism, Vol 12, Iss 1, Pp 1-17 (2021)
Publication Year :
2022
Publisher :
La Trobe, 2022.

Abstract

Background Autism spectrum disorder (ASD) is a complex neurodevelopmental condition whose biological basis is yet to be elucidated. The Australian Autism Biobank (AAB) is an initiative of the Cooperative Research Centre for Living with Autism (Autism CRC) to establish an Australian resource of biospecimens, phenotypes and genomic data for research on autism. Methods Genome-wide single-nucleotide polymorphism genotypes were available for 2,477 individuals (after quality control) from 546 families (436 complete), including 886 participants aged 2 to 17 years with diagnosed (n = 871) or suspected (n = 15) ASD, 218 siblings without ASD, 1,256 parents, and 117 unrelated children without an ASD diagnosis. The genetic data were used to confirm familial relationships and assign ancestry, which was majority European (n = 1,964 European individuals). We generated polygenic scores (PGS) for ASD, IQ, chronotype and height in the subset of Europeans, and in 3,490 unrelated ancestry-matched participants from the UK Biobank. We tested for group differences for each PGS, and performed prediction analyses for related phenotypes in the AAB. We called copy-number variants (CNVs) in all participants, and intersected these with high-confidence ASD- and intellectual disability (ID)-associated CNVs and genes from the public domain. Results The ASD (p = 6.1e−13), sibling (p = 4.9e−3) and unrelated (p = 3.0e−3) groups had significantly higher ASD PGS than UK Biobank controls, whereas this was not the case for height—a control trait. The IQ PGS was a significant predictor of measured IQ in undiagnosed children (r = 0.24, p = 2.1e−3) and parents (r = 0.17, p = 8.0e−7; 4.0% of variance), but not the ASD group. Chronotype PGS predicted sleep disturbances within the ASD group (r = 0.13, p = 1.9e−3; 1.3% of variance). In the CNV analysis, we identified 13 individuals with CNVs overlapping ASD/ID-associated CNVs, and 12 with CNVs overlapping ASD/ID/developmental delay-associated genes identified on the basis of de novo variants. Limitations This dataset is modest in size, and the publicly-available genome-wide-association-study (GWAS) summary statistics used to calculate PGS for ASD and other traits are relatively underpowered. Conclusions We report on common genetic variation and rare CNVs within the AAB. Prediction analyses using currently available GWAS summary statistics are largely consistent with expected relationships based on published studies. As the size of publicly-available GWAS summary statistics grows, the phenotypic depth of the AAB dataset will provide many opportunities for analyses of autism profiles and co-occurring conditions, including when integrated with other omics datasets generated from AAB biospecimens (blood, urine, stool, hair).

Details

Database :
OpenAIRE
Journal :
Molecular Autism, Molecular Autism, Vol 12, Iss 1, Pp 1-17 (2021)
Accession number :
edsair.doi.dedup.....32d757fbfaa1f5a65035ed7ea497d9ee
Full Text :
https://doi.org/10.26181/19428764