Back to Search Start Over

Chronic low-dose pro-oxidant treatment stimulates transcriptional activity of telomeric retroelements and increases telomere length in Drosophila

Authors :
Tomáš Krůček
Michala Korandová
Jindřiška Tomášková
Dalibor Kodrík
Radmila Čapková Frydrychová
Klára Szakosová
Ronald P. Kühnlein
Source :
Journal of Insect Physiology
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

It has been proposed that oxidative stress, elicited by high levels of reactive oxygen species, accelerates telomere shortening by erosion of telomeric DNA repeats. While most eukaryotes counteract telomere shortening by telomerase-driven addition of these repeats, telomeric loss in Drosophila is compensated by retrotransposition of the telomeric retroelements HeT-A, TART and TAHRE to chromosome ends. In this study we tested the effect of chronic exposure of flies to non-/sub-lethal doses of paraquat, which is a redox cycling compound widely used to induce oxidative stress in various experimental paradigms including telomere length analyses. Indeed, chronic paraquat exposure for five generations resulted in elevated transcriptional activity of both telomeric and non-telomeric transposable elements, and extended telomeric length in the tested fly lines. We propose that low oxidative stress leads to increased telomere length within Drosophila populations. For a mechanistic understanding of the observed phenomenon we discuss two scenarios: adaption, acting through a direct stimulation of telomere extension, or positive selection favoring individuals with longer telomeres within the population.

Details

ISSN :
00221910
Volume :
104
Database :
OpenAIRE
Journal :
Journal of Insect Physiology
Accession number :
edsair.doi.dedup.....32a768e9faef7fe0bad7dba8ff4bad9a