Back to Search Start Over

DiffuseStyleGesture: Stylized Audio-Driven Co-Speech Gesture Generation with Diffusion Models

Authors :
Yang, Sicheng
Wu, Zhiyong
Li, Minglei
Zhang, Zhensong
Hao, Lei
Bao, Weihong
Cheng, Ming
Xiao, Long
Publication Year :
2023
Publisher :
arXiv, 2023.

Abstract

The art of communication beyond speech there are gestures. The automatic co-speech gesture generation draws much attention in computer animation. It is a challenging task due to the diversity of gestures and the difficulty of matching the rhythm and semantics of the gesture to the corresponding speech. To address these problems, we present DiffuseStyleGesture, a diffusion model based speech-driven gesture generation approach. It generates high-quality, speech-matched, stylized, and diverse co-speech gestures based on given speeches of arbitrary length. Specifically, we introduce cross-local attention and self-attention to the gesture diffusion pipeline to generate better speech matched and realistic gestures. We then train our model with classifier-free guidance to control the gesture style by interpolation or extrapolation. Additionally, we improve the diversity of generated gestures with different initial gestures and noise. Extensive experiments show that our method outperforms recent approaches on speech-driven gesture generation. Our code, pre-trained models, and demos are available at https://github.com/YoungSeng/DiffuseStyleGesture.<br />Comment: 11 pages, 9 figures, IJCAI 2023

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....32a75de0364b29b90acb714d39faa2df
Full Text :
https://doi.org/10.48550/arxiv.2305.04919