Back to Search Start Over

Minimal surfaces and Schwarz lemma

Authors :
Kalaj, David
Source :
Indagationes Mathematicae. 34:637-642
Publication Year :
2023
Publisher :
Elsevier BV, 2023.

Abstract

We prove a sharp Schwarz type inequality for the Weierstrass- Enneper representation of the minimal surfaces. It states the following. If $F:\mathbf{D}\to \Sigma$ is a conformal harmonic parameterization of a minimal disk $\Sigma$, where $\mathbf{D}$ is the unit disk and $|\Sigma|=\pi R^2$, then $|F_x(z)|(1-|z|^2)\le R$. If for some $z$ the previous inequality is equality, then the surface is an affine disk, and $F$ is linear up to a M\"obius transformation of the unit disk.<br />Comment: 6 pages

Details

ISSN :
00193577
Volume :
34
Database :
OpenAIRE
Journal :
Indagationes Mathematicae
Accession number :
edsair.doi.dedup.....32761c29496f7a637fcb320b895214a0