Back to Search
Start Over
Minimal surfaces and Schwarz lemma
- Source :
- Indagationes Mathematicae. 34:637-642
- Publication Year :
- 2023
- Publisher :
- Elsevier BV, 2023.
-
Abstract
- We prove a sharp Schwarz type inequality for the Weierstrass- Enneper representation of the minimal surfaces. It states the following. If $F:\mathbf{D}\to \Sigma$ is a conformal harmonic parameterization of a minimal disk $\Sigma$, where $\mathbf{D}$ is the unit disk and $|\Sigma|=\pi R^2$, then $|F_x(z)|(1-|z|^2)\le R$. If for some $z$ the previous inequality is equality, then the surface is an affine disk, and $F$ is linear up to a M\"obius transformation of the unit disk.<br />Comment: 6 pages
- Subjects :
- High Energy Physics::Theory
Mathematics::Complex Variables
Mathematics - Complex Variables
General Mathematics
Mathematics::History and Overview
FOS: Mathematics
Astrophysics::Earth and Planetary Astrophysics
Mathematics::Differential Geometry
Complex Variables (math.CV)
Astrophysics::Galaxy Astrophysics
Subjects
Details
- ISSN :
- 00193577
- Volume :
- 34
- Database :
- OpenAIRE
- Journal :
- Indagationes Mathematicae
- Accession number :
- edsair.doi.dedup.....32761c29496f7a637fcb320b895214a0