Back to Search Start Over

Entropia de emaranhamento de antiferromagnetos dimerizados

Authors :
Leite, Leonardo da Silva Garcia, 1987
Doretto, Ricardo Luís, 1976
Brito, Frederico Borges de
Miranda, Eduardo
Universidade Estadual de Campinas. Instituto de Física Gleb Wataghin
Programa de Pós-Graduação em Física
UNIVERSIDADE ESTADUAL DE CAMPINAS
Source :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Publication Year :
2021
Publisher :
Universidade Estadual de Campinas - Repositorio Institucional, 2021.

Abstract

Orientador: Ricardo Luís Doretto Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin Resumo: Nesse trabalho, calculamos a entropia de emaranhamento de um antiferromagneto de Heisenberg dimerizado em uma rede quadrada. Dois padrões de dimerização distintos são considerados: colunar e alternado. Em ambos os casos, focamos na fase de sólidos de singletos (VBS) que é descrita pela representação dos operadores de ligação. Nesse formalismo, o hamiltoniano de spin original é mapeado em um modelo efetivo de bósons interagentes com excitações de tripleto. O hamiltoniano efetivo é estudado na aproximação harmônica e o espectro das excitações elementares e o diagrama de fase dos dois modelos dimerizados são determinados. Consideramos um subsistema unidimensional (cadeia) de comprimento $L$ dentro de uma rede quadrada com condições periódicas de contorno e calculamos a entropia de emaranhamento. Seguimos um procedimento analítico baseado na teoria de ondas de spin modificadas que havia sido desenvolvido originalmente para calcular a entropia de emaranhamento em fases magneticamente ordenadas. Em particular, esse procedimento nos permite considerar subsistemas unidimensionais compostos por até 200 sítios. Combinamos esse procedimento com o formalismo dos operadores de ligação na aproximação harmônica e mostramos que, para os dois modelos de Heisenberg dimerizados, a entropia de emaranhamento da fase VBS obedece uma lei de área. Tanto para a dimerização colunar quanto para a alternada, mostramos que a entropia de emaranhamento aumenta à medida que o sistema se aproxima da transição de fase quântica entre as fases Néel-VBS Abstract: Nesse trabalho, calculamos a entropia de emaranhamento de um antiferromagneto de Heisenberg dimerizado em uma rede quadrada. Dois padrões de dimerização distintos são considerados: colunar e alternado. Em ambos os casos, focamos na fase de sólidos de singletos (VBS) que é descrita pela representação dos operadores de ligação. Nesse formalismo, o hamiltoniano de spin original é mapeado em um modelo efetivo de bósons interagentes com excitações de tripleto. O hamiltoniano efetivo é estudado na aproximação harmônica e o espectro das excitações elementares e o diagrama de fase dos dois modelos dimerizados são determinados. Consideramos um subsistema unidimensional (cadeia) de comprimento $L$ dentro de uma rede quadrada com condições periódicas de contorno e calculamos a entropia de emaranhamento. Seguimos um procedimento analítico baseado na teoria de ondas de spin modificadas que havia sido desenvolvido originalmente para calcular a entropia de emaranhamento em fases magneticamente ordenadas. Em particular, esse procedimento nos permite considerar subsistemas unidimensionais compostos por até 200 sítios. Combinamos esse procedimento com o formalismo dos operadores de ligação na aproximação harmônica e mostramos que, para os dois modelos de Heisenberg dimerizados, a entropia de emaranhamento da fase VBS obedece uma lei de área. Tanto para a dimerização colunar quanto para a alternada, mostramos que a entropia de emaranhamento aumenta à medida que o sistema se aproxima da transição de fase quântica entre as fases Néel-VBS Mestrado Física Mestre em Física CAPES 1547615/2015

Details

Database :
OpenAIRE
Journal :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Accession number :
edsair.doi.dedup.....32741c08973b8d64ef4770cfad011d71
Full Text :
https://doi.org/10.47749/t/unicamp.2017.991071