Back to Search Start Over

Visualizing Classifier Adjacency Relations: A Case Study in Speaker Verification and Voice Anti-Spoofing

Authors :
Xin Wang
Kong Aik Lee
Massimiliano Todisco
Junichi Yamagishi
Andreas Nautsch
Md. Sahidullah
Héctor Delgado
Tomi Kinnunen
Nicholas Evans
University of Eastern Finland
Eurecom [Sophia Antipolis]
Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
National Institute of Informatics (NII)
Nuance Communications [Spain]
Institute for Infocomm Research (I2R)
This work was supported by a number of projects and funding sources: VoicePersonae, supported by the French Agence Nationale de la Recherche (ANR) and the Japan Science and Technology Agency (JST) with grant No. JPMJCR18A6
Academy of Finland (proj. 309629)
Region Grand Est, France.
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
INTERSPEECH 2021, INTERSPEECH 2021, Aug 2021, Brno, Czech Republic, INTERSPEECH 2021, Aug 2021, Brno, Czech Republic. ⟨10.21437/Interspeech.2021-1522⟩
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

Whether it be for results summarization, or the analysis of classifier fusion, some means to compare different classifiers can often provide illuminating insight into their behaviour, (dis)similarity or complementarity. We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers in response to a common dataset. Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores and with close relation to receiver operating characteristic (ROC) and detection error trade-off (DET) analyses. While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems. The former are produced by a Gaussian mixture model system trained with VoxCeleb data whereas the latter stem from submissions to the ASVspoof 2019 challenge.<br />Comment: Accepted to Interspeech 2021. Example code available at https://github.com/asvspoof-challenge/classifier-adjacency

Details

Database :
OpenAIRE
Journal :
INTERSPEECH 2021, INTERSPEECH 2021, Aug 2021, Brno, Czech Republic, INTERSPEECH 2021, Aug 2021, Brno, Czech Republic. ⟨10.21437/Interspeech.2021-1522⟩
Accession number :
edsair.doi.dedup.....3252eb2c96832b127c3168c2bb802efb
Full Text :
https://doi.org/10.48550/arxiv.2106.06362