Back to Search Start Over

Phase-Resolved Detection of Ultrabroadband THz Pulses inside a Scanning Tunneling Microscope Junction

Authors :
Melanie Müller
Martin Wolf
Natalia Martín Sabanés
Tobias Kampfrath
Source :
ACS Photonics
Publication Year :
2020

Abstract

Coupling phase-stable single-cycle terahertz (THz) pulses to scanning tunneling microscope (STM) junctions enables spatio-temporal imaging with femtosecond temporal and \r{A}ngstrom spatial resolution. The time resolution achieved in such THz-gated STM is ultimately limited by the sub-cycle temporal variation of the tip-enhanced THz field acting as an ultrafast voltage pulse, and hence by the ability to feed high-frequency, broadband THz pulses into the junction. Here, we report on the coupling of ultrabroadband (1-30 THz) single-cycle THz pulses from a spintronic THz emitter(STE) into a metallic STM junction. We demonstrate broadband phase-resolved detection of the THz voltage transient directly in the STM junction via THz-field-induced modulation of ultrafast photocurrents. Comparison to the unperturbed far-field THz waveform reveals the antenna response of the STM tip. Despite tip-induced low-pass filtering, frequencies up to 15 THz can be detected in the tip-enhanced near-field, resulting in THz transients with a half-cycle period of 115 fs. We further demonstrate simple polarity control of the THz bias via the STE magnetization, and show that up to 2 V THz bias at 1 MHz repetition rate can be achieved in the current setup. Finally, we find a nearly constant THz voltage and waveform over a wide range of tip-sample distances, which by comparison to numerical simulations confirms the quasi-static nature of the THz pulses. Our results demonstrate the suitability of spintronic THz emitters for ultrafast THz-STM with unprecedented bandwidth of the THz bias, and provide insight into the femtosecond response of defined nanoscale junctions.<br />Comment: 5 figures, supporting information available

Details

ISSN :
23304022
Database :
OpenAIRE
Journal :
ACS Photonics
Accession number :
edsair.doi.dedup.....32437fcb53b9afd3087bf711c26d1a6d
Full Text :
https://doi.org/10.1021/acsphotonics.0c00386