Back to Search Start Over

Numerical modeling and simulation of ZnO nanowire devices for energy harvesting

Authors :
Dapeng Yu
Yamin Leprince-Wang
Linda Serairi
Electronique, Systèmes de communication et Microsystèmes (ESYCOM)
Conservatoire National des Arts et Métiers [CNAM] (CNAM)
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Université Paris-Est Marne-la-Vallée (UPEM)-ESIEE Paris
Electron Microscopy Laboratory and State Key Laboratory for Microscopic Physics
Peking University [Beijing]
Laboratoire de Physique des Matériaux Divisés et des Interfaces (LPMDI)
Université Paris-Est Marne-la-Vallée (UPEM)-Centre National de la Recherche Scientifique (CNRS)
Source :
physica status solidi (c), physica status solidi (c), Wiley, 2016, 13 (7-9), pp.683-687. ⟨10.1002/pssc.201510270⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Duo to their multifunctional properties, the piezoelectric ZnO nanowires are of great interest in many applications such as the energy harvesting. In this work, a numerical modelling based on the finite element method was performed to study the potential distribution inside the ZnO nanowire and the impact of the geometric parameters on the generated piezopotential both in bending and compression deformation. In this context, a nanowire discharge behavioural study was carried out in order to obtain an analytic expression which connects the piezopotential and nanowire geometrical parameters in the bending deformation. Furthermore, a heuristic algorithm Particle Swarm Optimization (PSO) has been used in order to improve the electromechanical performance of ZnO nanowire based nanogenerator. It is fount that under the same order of force applied on a nanowire, the compression mode results in a piezopotential 9 times larger than that in the bending deformation. (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Details

Language :
English
ISSN :
16101634 and 16101642
Database :
OpenAIRE
Journal :
physica status solidi (c), physica status solidi (c), Wiley, 2016, 13 (7-9), pp.683-687. ⟨10.1002/pssc.201510270⟩
Accession number :
edsair.doi.dedup.....3220c2b17396313323f02d847257d2d8
Full Text :
https://doi.org/10.1002/pssc.201510270⟩