Back to Search
Start Over
The Diffeomorphism Group of the Solid Closed Torus and Hochschild Homology
- Source :
- Proceedings of the American Mathematical Society
- Publication Year :
- 2022
- Publisher :
- arXiv, 2022.
-
Abstract
- We prove that for a self-injective ribbon Grothendieck-Verdier category $\mathcal{C}$ in the sense of Boyarchenko-Drinfeld the cyclic action on the Hochschild complex of $\mathcal{C}$ extends to an action of the diffeomorphism group of the solid closed torus $\mathbb{S}^1 \times \mathbb{D}^2$.<br />Comment: v1: 12 pages; v2: minor changes
- Subjects :
- Applied Mathematics
General Mathematics
Mathematics - Rings and Algebras
Mathematics::K-Theory and Homology
Rings and Algebras (math.RA)
Mathematics::Quantum Algebra
Mathematics::Category Theory
Mathematics - Quantum Algebra
FOS: Mathematics
Algebraic Topology (math.AT)
Quantum Algebra (math.QA)
Mathematics - Algebraic Topology
Representation Theory (math.RT)
Mathematics - Representation Theory
Subjects
Details
- ISBN :
- 978-3-540-09563-7
978-1-4704-2024-6
978-0-387-94370-1
978-3-540-42416-1
978-0-387-97710-2
978-1-107-04845-4
3-540-09563-2
0-387-94370-6
3-540-42416-4
0-387-97710-4 - ISSN :
- 17538416, 1663487X, 0010437X, 02496291, 00029904, 16093321, 00029947, 00129593, 00409383, 00224049, 00218693, 00018708, 00015962, 14722747, 00421316, 00754102, and 00162736
- ISBNs :
- 9783540095637, 9781470420246, 9780387943701, 9783540424161, 9780387977102, 9781107048454, 3540095632, 0387943706, 3540424164, and 0387977104
- Database :
- OpenAIRE
- Journal :
- Proceedings of the American Mathematical Society
- Accession number :
- edsair.doi.dedup.....3207e61d6609c2e2e50a74e3b4255a03
- Full Text :
- https://doi.org/10.48550/arxiv.2201.03920