Back to Search Start Over

The Diffeomorphism Group of the Solid Closed Torus and Hochschild Homology

Authors :
Müller, Lukas
Woike, Lukas
Source :
Proceedings of the American Mathematical Society
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

We prove that for a self-injective ribbon Grothendieck-Verdier category $\mathcal{C}$ in the sense of Boyarchenko-Drinfeld the cyclic action on the Hochschild complex of $\mathcal{C}$ extends to an action of the diffeomorphism group of the solid closed torus $\mathbb{S}^1 \times \mathbb{D}^2$.<br />Comment: v1: 12 pages; v2: minor changes

Details

ISBN :
978-3-540-09563-7
978-1-4704-2024-6
978-0-387-94370-1
978-3-540-42416-1
978-0-387-97710-2
978-1-107-04845-4
3-540-09563-2
0-387-94370-6
3-540-42416-4
0-387-97710-4
ISSN :
17538416, 1663487X, 0010437X, 02496291, 00029904, 16093321, 00029947, 00129593, 00409383, 00224049, 00218693, 00018708, 00015962, 14722747, 00421316, 00754102, and 00162736
ISBNs :
9783540095637, 9781470420246, 9780387943701, 9783540424161, 9780387977102, 9781107048454, 3540095632, 0387943706, 3540424164, and 0387977104
Database :
OpenAIRE
Journal :
Proceedings of the American Mathematical Society
Accession number :
edsair.doi.dedup.....3207e61d6609c2e2e50a74e3b4255a03
Full Text :
https://doi.org/10.48550/arxiv.2201.03920