Back to Search Start Over

Rat germinal cells require PARP for repair of DNA damage induced by γ-irradiation and H2O2 treatment

Authors :
Piera Quesada
S. Di Meglio
Luigia Atorino
Roy Jones
Benedetta Farina
Source :
European Journal of Cell Biology. 80:222-229
Publication Year :
2001
Publisher :
Elsevier BV, 2001.

Abstract

The ability of rat germinal cells to recover from genotoxic stress has been investigated using isolated populations of primary spermatocytes and round spermatids. Using a comet assay at pH 10.0 to assess single strand breakage (SSB) in DNA, it was found that a high level of damage was induced by 5 Gy gamma-irradiation and acute exposure to 50 microM H2O2. This damage was effectively repaired during a subsequent recovery period of 1-3 hours culture in vitro but repair was significantly delayed in the presence of the poly(ADP-ribose)polymerase (PARP) inhibitor 3-aminobenzamide (3-ABA). Immunofluorescence detection of PARP with specific antibodies localised the protein to discrete foci within the nucleus of both spermatocytes and spermatids. Poly(ADP-ribose) (pADPR) could also be detected in spermatid nuclei following gamma-irradiation or H2O2 treatment. Moreover, PARP activation occurs both in spermatocytes and spermatids left to recover after both genotoxic stresses. The NO donors, 3-morpholino-sydnonimine (SIN-1) and S-nitrosoglutathione (SNOG), caused significant SSBs in both spermatocytes and spermatids. The effects of SIN-1 could be prevented by exogenous catalase (CAT), but not superoxide dismutase (SOD), in the cell suspensions. SNOG-induced SSBs were insensitive to both CAT and SOD. It is concluded that DNA in spermatocytes and spermatids is sensitive to damage by gamma-irradiation and H2O2 and that efficient repair of SSBs requires PARP activity.

Details

ISSN :
01719335
Volume :
80
Database :
OpenAIRE
Journal :
European Journal of Cell Biology
Accession number :
edsair.doi.dedup.....3140f7c3a62bf09886294eb46a40c0a4