Back to Search Start Over

Engineering an Mg2+ site to replace a structurally conserved arginine in the catalytic center of histidyl-tRNA synthetase by computer experiments

Authors :
John G. Arnez
Karen Flanagan
Dino Moras
Thomas Simonson
Source :
Proteins: Structure, Function, and Genetics. 32:362-380
Publication Year :
1998
Publisher :
Wiley, 1998.

Abstract

Histidyl-tRNA synthetase (HisRS) differs from other class II aminoacyl-tRNA synthetases (aaRS) in that it harbors an arginine at a position where the others bind a catalytic Mg2+ ion. In computer experiments, four mutants of HisRS from Escherichia coli were engineered by removing the arginine and introducing a Mg2+ ion and residues from seryl-tRNA synthetase (SerRS) that are involved in Mg2+ binding. The mutants recreate an active site carboxylate pair conserved in other class II aaRSs, in two possible orders: Glu-Asp or Asp-Glu, replacing Glu-Thr in native HisRS. The mutants were simulated by molecular dynamics in complex with histidyl-adenylate. As controls, the native HisRS was simulated in complexes with histidine, histidyl-adenylate, and histidinol. The native structures sampled were in good agreement with experimental structures and biochemical data. The two mutants with the Glu-Asp sequence showed significant differences in active site structure and Mg2+ coordination from SerRS. The others were more similar to SerRS, and one of them was analyzed further through simulations in complex with histidine, and His+ATP. The latter complex sampled two Mg2+ positions, depending on the conformation of a loop anchoring the second carboxylate. The lowest energy conformation led to an active site geometry very similar to SerRS, with the principal Mg2+ bridging the α- and β-phosphates, the first carboxylate (Asp) coordinating the ion through a water molecule, and the second (Glu) coordinating it directly. This mutant is expected to be catalytically active and suggests a basis for the previously unexplained conservation of the active site Asp-Glu pair in class II aaRSs other than HisRS. Proteins 32:362–380, 1998. © 1998 Wiley-Liss, Inc.

Details

ISSN :
10970134 and 08873585
Volume :
32
Database :
OpenAIRE
Journal :
Proteins: Structure, Function, and Genetics
Accession number :
edsair.doi.dedup.....3127896cab6191631ac3027295a10bf2
Full Text :
https://doi.org/10.1002/(sici)1097-0134(19980815)32:3<362::aid-prot11>3.0.co;2-7