Back to Search
Start Over
Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells
- Source :
- Digital.CSIC. Repositorio Institucional del CSIC, instname
- Publication Year :
- 2011
- Publisher :
- Lippincott Williams & Wilkins, 2011.
-
Abstract
- The natural isoquinoline alkaloid berberine exhibits a wide spectrum of biological activities including antitumor activity, but its mechanism of action remains to be fully elucidated. Here, we report that berberine induced apoptosis in human melanoma cells, through a process that involved mitochondria and caspase activation. Berberine-induced activation of a number of caspases, including caspases 3, 4, 7, 8, and 9. Pan-caspase inhibitor, z-VAD-fmk, and caspase-8 and caspase-9 inhibitors prevented apoptosis. Berberine also led to the generation of the p20 cleavage fragment of BAP31, involved in directing proapoptotic signals between the endoplasmic reticulum and the mitochondria. Treatment of SK-MEL-2 melanoma cells with berberine induced disruption of the mitochondrial transmembrane potential, release of cytochrome c and apoptosis-inducing factor from the mitochondria to the cytosol, generation of reactive oxygen species (ROS), and a decreased ATP/ADP ratio. Overexpression of bcl-x(L) by gene transfer prevented berberine-induced cell death, mitochondrial transmembrane potential loss, and cytochrome c and apoptosis-inducing factor release, but not ROS generation. N-acetyl-L-cysteine inhibited the production of ROS, but did not abrogate the berberine-induced apoptosis. Inhibition of extracellular signal-regulated kinase (ERK) phosphorylation, by using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and reduction of B-RAF levels by silencing RNA induced cell death of SK-MEL-2 cells, and diminished the berberine concentration required to promote apoptosis. These data show that berberine-induced apoptosis in melanoma cells involves mitochondria and caspase activation, but ROS generation was not essential. Our results indicate that inhibition of B-RAF/ERK survival signaling facilitates the cell death response triggered by berberine.
- Subjects :
- G2 Phase
Proto-Oncogene Proteins B-raf
MAPK/ERK pathway
Cancer Research
Programmed cell death
Berberine
Blotting, Western
Down-Regulation
Apoptosis
Mitochondrion
chemistry.chemical_compound
Cell Line, Tumor
Humans
Pharmacology (medical)
RNA, Small Interfering
Extracellular Signal-Regulated MAP Kinases
Melanoma
Chromatography, High Pressure Liquid
Caspase
Pharmacology
Microscopy, Confocal
biology
Adenine Nucleotides
Chemistry
Kinase
Cytochrome c
Cell Cycle
G1 Phase
Cytochromes c
Flow Cytometry
Antineoplastic Agents, Phytogenic
Mitochondria
Cell biology
Oncology
Caspases
biology.protein
Reactive Oxygen Species
Signal Transduction
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Digital.CSIC. Repositorio Institucional del CSIC, instname
- Accession number :
- edsair.doi.dedup.....3122b78eb71f7728c40aef736cf9b846