Back to Search
Start Over
A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems
- Source :
- Numerische Mathematik, Numerische Mathematik, Springer Verlag, 2012, 121, pp.397-431. 〈10.1007/s00211-011-0438-4〉, Numerische Mathematik, Vol. 121, No 3 (2012) pp. 397-431, Numerische Mathematik, 2012, 121, pp.397-431. ⟨10.1007/s00211-011-0438-4⟩, Numerische Mathematik, Springer Verlag, 2012, 121, pp.397-431. ⟨10.1007/s00211-011-0438-4⟩
- Publication Year :
- 2012
- Publisher :
- HAL CCSD, 2012.
-
Abstract
- International audience; The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L^2 and the H^1 norms are proved. The numerical solution obtained from the finite element method with quadrature formula is shown to be unique for a sufficiently fine mesh. The analysis is valid for both simplicial and rectangular finite elements of arbitrary order. Numerical experiments corroborate the theoretical convergence rates.
- Subjects :
- a priori error estimates
Finite elements
010103 numerical & computational mathematics
01 natural sciences
Tanh-sinh quadrature
numerical quadrature
Nonmonotone quasilinear elliptic problem
A priori error estimates
Calculus
Gauss–Jacobi quadrature
Applied mathematics
0101 mathematics
Variational crime
Mathematics
Clenshaw–Curtis quadrature
Numerical quadrature
Applied Mathematics
Gauss–Laguerre quadrature
[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA]
Finite element method
Gauss–Kronrod quadrature formula
Quadrature (mathematics)
Numerical integration
010101 applied mathematics
Computational Mathematics
nonmonotone quasilinear elliptic problem
variational crime
65N30, 65M60, 65D30
finite elements
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Subjects
Details
- Language :
- English
- ISSN :
- 0029599X and 09453245
- Database :
- OpenAIRE
- Journal :
- Numerische Mathematik, Numerische Mathematik, Springer Verlag, 2012, 121, pp.397-431. 〈10.1007/s00211-011-0438-4〉, Numerische Mathematik, Vol. 121, No 3 (2012) pp. 397-431, Numerische Mathematik, 2012, 121, pp.397-431. ⟨10.1007/s00211-011-0438-4⟩, Numerische Mathematik, Springer Verlag, 2012, 121, pp.397-431. ⟨10.1007/s00211-011-0438-4⟩
- Accession number :
- edsair.doi.dedup.....31164c84c33461c1577e684227a3d8b0
- Full Text :
- https://doi.org/10.1007/s00211-011-0438-4〉