Back to Search
Start Over
MK-1775, a Novel Wee1 Kinase Inhibitor, Radiosensitizes p53-defective Human Tumor Cells
- Publication Year :
- 2011
-
Abstract
- Purpose: Radiotherapy is commonly used to treat a variety of solid tumors. However, improvements in the therapeutic ratio for several disease sites are sorely needed, leading us to assess molecularly targeted therapeutics as radiosensitizers. The aim of this study was to assess the wee1 kinase inhibitor, MK-1775, for its ability to radiosensitize human tumor cells. Experimental Design: Human tumor cells derived from lung, breast, and prostate cancers were tested for radiosensitization by MK-1775 using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of MK-1775 to abrogate the radiation-induced G2 block, thereby allowing cells harboring DNA lesions to prematurely progress into mitosis, was determined using flow cytometry and detection of γ-H2AX foci. The in vivo efficacy of the combination of MK-1775 and radiation was assessed by tumor growth delay experiments using a human lung cancer cell line growing as a xenograft tumor in nude mice. Results: Clonogenic survival analyses indicated that nanomolar concentrations of MK-1775 radiosensitized p53-defective human lung, breast, and prostate cancer cells but not similar lines with wild-type p53. Consistent with its ability to radiosensitize, MK-1775 abrogated the radiation-induced G2 block in p53-defective cells but not in p53 wild-type lines. MK-1775 also significantly enhanced the antitumor efficacy of radiation in vivo as shown in tumor growth delay studies, again for p53-defective tumors. Conclusions: These results indicate that p53-defective human tumor cells are significantly radiosensitized by the potent and selective wee1 kinase inhibitor, MK-1775, in both the in vitro and in vivo settings. Taken together, our findings strongly support the clinical evaluation of MK-1775 in combination with radiation. Clin Cancer Res; 17(17); 5638–48. ©2011 AACR.
- Subjects :
- Male
Cancer Research
Pathology
medicine.medical_specialty
Radiation-Sensitizing Agents
Lung Neoplasms
medicine.medical_treatment
Transplantation, Heterologous
Mice, Nude
Antineoplastic Agents
Breast Neoplasms
Cell Cycle Proteins
Pyrimidinones
Biology
Article
Flow cytometry
Prostate cancer
Mice
In vivo
Cell Line, Tumor
Neoplasms
medicine
Animals
Humans
Protein Kinase Inhibitors
medicine.diagnostic_test
Cancer
Nuclear Proteins
Prostatic Neoplasms
Protein-Tyrosine Kinases
medicine.disease
Combined Modality Therapy
Xenograft Model Antitumor Assays
Radiation therapy
Transplantation
G2 Phase Cell Cycle Checkpoints
Wee1
Pyrimidines
Oncology
Cell culture
biology.protein
Cancer research
Pyrazoles
Female
Tumor Suppressor Protein p53
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....30fcb0db1cc5b0a6bfb20bc146d0fb84