Back to Search
Start Over
A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato
- Source :
- Metabolic Engineering, Metabolic Engineering, 2022, S1096-7176 (22), pp.00010-6. ⟨10.1016/j.ymben.2022.01.004⟩
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.
- Subjects :
- Abiotic stress tolerance
[SDV]Life Sciences [q-bio]
fungi
Biomass and yield
food and beverages
Bioengineering
Metabolites and lipids
Carotenoids
Applied Microbiology and Biotechnology
Biosynthetic Pathways
Solanum lycopersicum
Stress, Physiological
Apocarotenoids
Metabolic engineering
Phytohormones
Biomass
Biotechnology
Subjects
Details
- ISSN :
- 10967176
- Volume :
- 70
- Database :
- OpenAIRE
- Journal :
- Metabolic Engineering
- Accession number :
- edsair.doi.dedup.....30e7066613d01dc440e32f704b92987b