Back to Search Start Over

Prediction of post-translational modification sites using multiple kernel support vector machine

Authors :
Minghui Wang
Ao Li
Binghua Wang
Source :
PeerJ, PeerJ, Vol 5, p e3261 (2017)
Publication Year :
2017
Publisher :
PeerJ Inc., 2017.

Abstract

Protein post-translational modification (PTM) is an important mechanism that is involved in the regulation of protein function. Considering the high-cost and labor-intensive of experimental identification, many computational prediction methods are currently available for the prediction of PTM sites by using protein local sequence information in the context of conserved motif. Here we proposed a novel computational method by using the combination of multiple kernel support vector machines (SVM) for predicting PTM sites including phosphorylation, O-linked glycosylation, acetylation, sulfation and nitration. To largely make use of local sequence information and site-modification relationships, we developed a local sequence kernel and Gaussian interaction profile kernel, respectively. Multiple kernels were further combined to train SVM for efficiently leveraging kernel information to boost predictive performance. We compared the proposed method with existing PTM prediction methods. The experimental results revealed that the proposed method performed comparable or better performance than the existing prediction methods, suggesting the feasibility of the developed kernels and the usefulness of the proposed method in PTM sites prediction.

Details

Language :
English
ISSN :
21678359
Volume :
5
Database :
OpenAIRE
Journal :
PeerJ
Accession number :
edsair.doi.dedup.....30e566a15ba8e028b4bbfd6f959e7e91