Back to Search
Start Over
SNR (Signal-To-Noise Ratio) Impact on Water Constituent Retrieval from Simulated Images of Optically Complex Amazon Lakes
- Source :
- Remote Sensing, Volume 9, Issue 7, Pages: 644, Remote Sensing, Vol 9, Iss 7, p 644 (2017)
- Publication Year :
- 2017
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2017.
-
Abstract
- Uncertainties in the estimates of water constituents are among the main issues concerning the orbital remote sensing of inland waters. Those uncertainties result from sensor design, atmosphere correction, model equations, and in situ conditions (cloud cover, lake size/shape, and adjacency effects). In the Amazon floodplain lakes, such uncertainties are amplified due to their seasonal dynamic. Therefore, it is imperative to understand the suitability of a sensor to cope with them and assess their impact on the algorithms for the retrieval of constituents. The objective of this paper is to assess the impact of the SNR on the Chl-a and TSS algorithms in four lakes located at Mamirauá Sustainable Development Reserve (Amazonia, Brazil). Two data sets were simulated (noisy and noiseless spectra) based on in situ measurements and on sensor design (MSI/Sentinel-2, OLCI/Sentinel-3, and OLI/Landsat 8). The dataset was tested using three and four algorithms for TSS and Chl-a, respectively. The results showed that the impact of the SNR on each algorithm displayed similar patterns for both constituents. For additive and single band algorithms, the error amplitude is constant for the entire concentration range. However, for multiplicative algorithms, the error changes according to the model equation and the Rrs magnitude. Lastly, for the exponential algorithm, the retrieval amplitude is higher for a low concentration. The OLCI sensor has the best retrieval performance (error of up to 2 μg/L for Chl-a and 3 mg/L for TSS). For MSI, the error of the additive and single band algorithms for TSS and Chl-a are low (up to 5 mg/L and 1 μg/L, respectively); but for the multiplicative algorithm, the errors were above 10 μg/L. The OLI simulation resulted in errors below 3 mg/L for TSS. However, the number and position of OLI bands restrict Chl-a retrieval. Sensor and algorithm selection need a comprehensive analysis of key factors such as sensor design, in situ conditions, water brightness (Rrs), and model equations before being applied for inland water studies.
- Subjects :
- inland waters
Brightness
010504 meteorology & atmospheric sciences
Cloud cover
Science
Remote Sensing Reflectance
0211 other engineering and technologies
Magnitude (mathematics)
02 engineering and technology
01 natural sciences
Exponential function
Signal-to-noise ratio
Amplitude
Range (statistics)
General Earth and Planetary Sciences
Environmental science
Satellite imagery
signal-to-noise ratio
bio-optical algorithms
021101 geological & geomatics engineering
0105 earth and related environmental sciences
Remote sensing
Subjects
Details
- Language :
- English
- ISSN :
- 20724292
- Database :
- OpenAIRE
- Journal :
- Remote Sensing
- Accession number :
- edsair.doi.dedup.....30d700458b2f2fc9ac32d4ec77908b90
- Full Text :
- https://doi.org/10.3390/rs9070644