Back to Search
Start Over
Global Bifurcation on Time Scales
- Source :
- Journal of Mathematical Analysis and Applications. 267:345-360
- Publication Year :
- 2002
- Publisher :
- Elsevier BV, 2002.
-
Abstract
- We consider the structure of the solution set of a nonlinear Sturm–Liouville boundary value problem defined on a general time scale. Using global bifurcation theory we show that unbounded continua of nontrivial solutions bifurcate from the trivial solution at the eigenvalues of the linearization, and we show that certain nodal properties of the solutions are preserved along these continua. These results extend the well-known results of Rabinowitz for the case of Sturm–Liouville ordinary differential equations.
- Subjects :
- Oscillation theory
Applied Mathematics
Mathematical analysis
time scale
Solution set
Sturm–Liouville theory
Saddle-node bifurcation
Mathematics::Spectral Theory
global bifurcation
Bifurcation diagram
Bifurcation theory
Ordinary differential equation
Boundary value problem
Sturm–Liouville
Analysis
Mathematics
Subjects
Details
- ISSN :
- 0022247X
- Volume :
- 267
- Database :
- OpenAIRE
- Journal :
- Journal of Mathematical Analysis and Applications
- Accession number :
- edsair.doi.dedup.....30c0ef5d3f6d6c613659275ce557425a
- Full Text :
- https://doi.org/10.1006/jmaa.2001.7780