Back to Search Start Over

Global Bifurcation on Time Scales

Authors :
Bryan P. Rynne
Fordyce A. Davidson
Source :
Journal of Mathematical Analysis and Applications. 267:345-360
Publication Year :
2002
Publisher :
Elsevier BV, 2002.

Abstract

We consider the structure of the solution set of a nonlinear Sturm–Liouville boundary value problem defined on a general time scale. Using global bifurcation theory we show that unbounded continua of nontrivial solutions bifurcate from the trivial solution at the eigenvalues of the linearization, and we show that certain nodal properties of the solutions are preserved along these continua. These results extend the well-known results of Rabinowitz for the case of Sturm–Liouville ordinary differential equations.

Details

ISSN :
0022247X
Volume :
267
Database :
OpenAIRE
Journal :
Journal of Mathematical Analysis and Applications
Accession number :
edsair.doi.dedup.....30c0ef5d3f6d6c613659275ce557425a
Full Text :
https://doi.org/10.1006/jmaa.2001.7780