Back to Search
Start Over
Factors of some truncated basic hypergeometric series
- Source :
- Journal of Mathematical Analysis and Applications. 476:851-859
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- We prove that certain basic hypergeometric series truncated at $k=n-1$ have the factor $\Phi_n(q)^2$, where $\Phi_n(q)$ is the $n$-th cyclotomic polynomial. This confirms two recent conjectures of the author and Zudilin. We also put forward some conjectures on $q$-congruences modulo $\Phi_n(q)^2$.<br />Comment: 9 pages
- Subjects :
- Basic hypergeometric series
Mathematics - Number Theory
Mathematics::Complex Variables
Mathematics::Number Theory
Applied Mathematics
Modulo
010102 general mathematics
33D15, 11A07, 11F33
01 natural sciences
010101 applied mathematics
Combinatorics
Mathematics::Probability
FOS: Mathematics
Mathematics - Combinatorics
Number Theory (math.NT)
Combinatorics (math.CO)
0101 mathematics
Cyclotomic polynomial
Analysis
Mathematics
Subjects
Details
- ISSN :
- 0022247X
- Volume :
- 476
- Database :
- OpenAIRE
- Journal :
- Journal of Mathematical Analysis and Applications
- Accession number :
- edsair.doi.dedup.....30ace001e3591c92a5b9b0a3d2f0894d