Back to Search Start Over

The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system

Authors :
Matthieu Alfaro
Hiroshi Matano
Danielle Hilhorst
Institut de Mathématiques et de Modélisation de Montpellier (I3M)
Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
Laboratoire d'Analyse Numérique
Université Paris-Sud - Paris 11 (UP11)
Laboratoire de Mathématiques d'Orsay (LM-Orsay)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Graduate School of Mathematical Sciences (GSMS)
The University of Tokyo (UTokyo)
Source :
Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2008, 245, pp.505-565. ⟨10.1016/j.jde.2008.01.014⟩
Publication Year :
2008
Publisher :
HAL CCSD, 2008.

Abstract

We consider an Allen–Cahn type equation of the form u t = Δ u + e −2 f e ( x , t , u ) , where e is a small parameter and f e ( x , t , u ) = f ( u ) − e g e ( x , t , u ) a bistable nonlinearity associated with a double-well potential whose well-depths can be slightly unbalanced. Given a rather general initial data u 0 that is independent of e , we perform a rigorous analysis of both the generation and the motion of interface. More precisely we show that the solution develops a steep transition layer within the time scale of order e 2 | ln e | , and that the layer obeys the law of motion that coincides with the formal asymptotic limit within an error margin of order e . This is an optimal estimate that has not been known before for solutions with general initial data, even in the case where g e ≡ 0 . Next we consider systems of reaction–diffusion equations of the form { u t = Δ u + e −2 f e ( u , v ) , v t = D Δ v + h ( u , v ) , which include the FitzHugh–Nagumo system as a special case. Given a rather general initial data ( u 0 , v 0 ) , we show that the component u develops a steep transition layer and that all the above-mentioned results remain true for the u -component of these systems.

Details

Language :
English
ISSN :
00220396 and 10902732
Database :
OpenAIRE
Journal :
Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2008, 245, pp.505-565. ⟨10.1016/j.jde.2008.01.014⟩
Accession number :
edsair.doi.dedup.....309ede4890fa4d15a78b62383c51e2a0
Full Text :
https://doi.org/10.1016/j.jde.2008.01.014⟩