Back to Search
Start Over
A pH-Sensing Optode for Mapping Spatiotemporal Gradients in 3D Paper-Based Cell Cultures
- Source :
- Analytical Chemistry. 90:2376-2383
- Publication Year :
- 2018
- Publisher :
- American Chemical Society (ACS), 2018.
-
Abstract
- Paper-based cultures are an emerging platform for preparing 3D tissue-like structures. Chemical gradients can be imposed upon these cultures, generating microenvironments similar to those found in poorly vascularized tumors. There is increasing evidence that the tumor microenvironment is responsible for promoting drug resistance and increased invasiveness. Acidosis, or the acidification of the extracellular space, is particularly important in promoting these aggressive cancer phenotypes. To better understand how cells respond to acidosis there is a need for 3D culture platforms that not only model relevant disease states but also contain sensors capable of quantifying small molecules in the extracellular environment. In this work, we describe pH-sensing optodes that are capable of generating high spatial and temporal resolution maps of pH gradients in paper-based cultures. This sensor was fabricated by suspending microparticles containing pH-sensitive (fluorescein) and pH-insensitive (diphenylanthracene) dyes in a polyurethane hydrogel, which was then coated onto a transparent film. The pH-sensing films have a fast response time, are reversible, stable in long-term culture environments, have minimal photobleaching, and are not cytotoxic. These films have a pKa of 7.61 ± 0.04 and are sensitive in the pH range corresponding to normal and tumorigenic tissues. With these optodes, we measured the spatiotemporal evolution of pH gradients in paper-based tumor models.
- Subjects :
- Paper
Polyurethanes
Cell Culture Techniques
Oligosaccharides
Chitin
02 engineering and technology
010402 general chemistry
01 natural sciences
Article
Analytical Chemistry
Cell Line, Tumor
Extracellular
Humans
Fluorescent Dyes
Anthracenes
Chitosan
Tumor microenvironment
Chemistry
Aggressive cancer
Hydrogels
Paper based
Hydrogen-Ion Concentration
021001 nanoscience & nanotechnology
0104 chemical sciences
Microscopy, Fluorescence
Cell culture
Biophysics
Ph sensing
Fluorescein
Optode
0210 nano-technology
Subjects
Details
- ISSN :
- 15206882 and 00032700
- Volume :
- 90
- Database :
- OpenAIRE
- Journal :
- Analytical Chemistry
- Accession number :
- edsair.doi.dedup.....308499b6ad78bd93d35388a7a2f36ee0
- Full Text :
- https://doi.org/10.1021/acs.analchem.7b05015