Back to Search Start Over

Edge detection and image restoration with anisotropic topological gradient

Authors :
Stanislas Larnier
Jérôme Fehrenbach
Mathématiques pour l'Industrie et la Physique (MIP)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
2010 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2010: International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010: International Conference on Acoustics, Speech, and Signal Processing, Mar 2010, Dallas, United States. pp.1362-1365, ⟨10.1109/ICASSP.2010.5495448⟩, ICASSP
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

International audience; Topological asymptotic analysis provides tools to detect edges and their orientation. The purpose of this article is to show the possibilities of anisotropic topological gradient in image restoration. Previous methods based on the topological gradient used isotropic diffusion to restore images. These methods are improved here by using anisotropic diffusion and differentiating between principal and secondary edges. A texture detector is also used to increase the diffusion outside textured regions. Numerical results are presented, including a comparison with the Non-Local Means method. The algorithms presented here lead to results similar to the Non-Local Means (in terms of quality), and shorter processing times.

Details

Language :
English
Database :
OpenAIRE
Journal :
2010 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2010: International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010: International Conference on Acoustics, Speech, and Signal Processing, Mar 2010, Dallas, United States. pp.1362-1365, ⟨10.1109/ICASSP.2010.5495448⟩, ICASSP
Accession number :
edsair.doi.dedup.....307492b7bdc48fc9bc2064e65afcfa8b
Full Text :
https://doi.org/10.1109/ICASSP.2010.5495448⟩