Back to Search Start Over

Structural Basis for Calcium and Phosphatidylserine Regulation of Phospholipase C δ1

Authors :
Klim King
Minae Kobayashi
Hwei Fang Cheng
Jon W. Lomasney
Source :
Biochemistry. 51:2246-2257
Publication Year :
2012
Publisher :
American Chemical Society (ACS), 2012.

Abstract

Many membrane-associated enzymes, including those of the phospholipase C (PLC) superfamily, are regulated by specific interactions with lipids. Previously, we have shown that the C2 domain of PLC δ1 is required for phosphatidylserine (PS)-dependent enzyme activation and that activation requires the presence of Ca(2+). To identify the site of interaction and the role of Ca(2+) in the activation mechanism, we mutagenized three highly conserved Ca(2+) binding residues (Asp-653, Asp-706, and Asp-708) to Gly in the C2 domain of PLC δ1. The PS-dependent Ca(2+) binding affinities of the mutant enzymes D653G, D706G, and D708G were reduced by 1 order of magnitude, and the maximal level of Ca(2+) binding was reduced to half of that of the native enzyme. The level of Ca(2+)-dependent PS binding was also reduced in the mutant enzymes. Under basal conditions, the Ca(2+) dependence and the maximal level of hydrolysis of phosphatidylinositol 4,5-bisphosphate were not altered in the mutants. However, the Ca(2+)-dependent PS stimulation was severely defective. PS reduces the K(m) of the native enzyme almost 20-fold, but far less for the mutants. Replacing Asp-653, Asp-706, and Asp-708 simultaneously with glycine in the C2 domain of PLC δ1 leads to a complete and selective loss of the stimulation and binding by PS. These results show that D653, D706, and D708 are required for Ca(2+) binding in the C2 domain and demonstrate a mechanism by which C2 domains can mediate regulation of enzyme activity by specific lipid ligands.

Details

ISSN :
15204995 and 00062960
Volume :
51
Database :
OpenAIRE
Journal :
Biochemistry
Accession number :
edsair.doi.dedup.....3072504d1ee3f7926753289c3abc6cdb