Back to Search Start Over

Node-Centric Community Detection in Multilayer Networks with Layer-Coverage Diversification Bias

Authors :
Dino Ienco
Pascal Poncelet
Andrea Tagarelli
Arnaud Sallaberry
Roberto Interdonato
Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica [Calabria] (DIMES)
Università della Calabria [Arcavacata di Rende] (Unical)
Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
ADVanced Analytics for data SciencE (ADVANSE)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Université Paul-Valéry - Montpellier 3 (UM3)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Université Paul-Valéry - Montpellier 3 (UPVM)
Source :
8th International Workshop on Complex Networks, CompleNet, CompleNet, Mar 2017, Dubrovnik, Croatia. pp.57-66, ⟨10.1007/978-3-319-54241-6_5⟩, Complex Networks VIII ISBN: 9783319542409
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

The problem of node-centric, or local, community detection in information networks refers to the identification of a community for a given input node, having limited information about the network topology. Existing methods for solving this problem, however, are not conceived to work on complex networks. In this paper, we propose a novel framework for local community detection based on the multilayer network model. Our approach relies on the maximization of the ratio between the community internal connection density and the external connection density, according to multilayer similarity-based community relations. We also define a biasing scheme that allows the discovery of local communities characterized by different degrees of layer-coverage diversification. Experimental evaluation conducted on real-world multilayer networks has shown the significance of our approach.<br />Accepted at 8th International Conference on Complex Networks (CompleNet'17)

Details

Language :
English
ISBN :
978-3-319-54240-9
ISBNs :
9783319542409
Database :
OpenAIRE
Journal :
8th International Workshop on Complex Networks, CompleNet, CompleNet, Mar 2017, Dubrovnik, Croatia. pp.57-66, ⟨10.1007/978-3-319-54241-6_5⟩, Complex Networks VIII ISBN: 9783319542409
Accession number :
edsair.doi.dedup.....3070af78c330f528c79dbc4a9a2b1225
Full Text :
https://doi.org/10.1007/978-3-319-54241-6_5⟩