Back to Search Start Over

Characterisation and propagation of spatial fields in deterioration models: application to concrete carbonation

Authors :
Franck Schoefs
Emilio Bastidas-Arteaga
N. Rakotovao Ravahatra
Frédéric Duprat
M. Oumouni
T. De Larrard
Laboratoire Matériaux et Durabilité des constructions (LMDC)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées
Institut de Recherche en Génie Civil et Mécanique (GeM)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)
Source :
European Journal of Environmental and Civil Engineering, European Journal of Environmental and Civil Engineering, Taylor & Francis, 2019, pp.1-27. ⟨10.1080/19648189.2019.1620133⟩, European Journal of Environmental and Civil Engineering, 2019, pp.1-27. ⟨10.1080/19648189.2019.1620133⟩
Publication Year :
2019
Publisher :
Informa UK Limited, 2019.

Abstract

International audience; Characterising spatial variability, which is of utter importance in inspection and maintenance strategies, requires comprehensive spatially distributed databases. However, in real practice, spatially distributed inspection is costly and could damage the structure if a large number of destructive tests are carried out. Therefore, the first objective of this work is to propose a methodology to extract as much informations as possible from available spatially distributed databases, in order to characterise the spatial correlation. Moreover, a preventive maintenance strategy should be supported by deterioration models able to propagate uncertainty and spatial variability. Then, the second objective of the paper is to evaluate the ability of these models to propagate uncertainties and spatial variability. The methodology is illustrated with data collected through destructive tests in a concrete wall exposed to carbonation. The database encompasses information about the concrete porosity, saturation degree , density, and carbonation depth. Recommendations are hence provided in this work for the choice of input parameters that should be modelled as random fields. These recommendations were applied and then confirmed by comparing measured and modelled spatially distributed carbonation depths. The results highlight that uncertainties in measurements and statistical uncertainties have significant impact when dealing with spatial variability.

Details

ISSN :
21167214 and 19648189
Volume :
27
Database :
OpenAIRE
Journal :
European Journal of Environmental and Civil Engineering
Accession number :
edsair.doi.dedup.....305e621486d4fc2d993325ba855c7c23
Full Text :
https://doi.org/10.1080/19648189.2019.1620133