Back to Search
Start Over
Improving the CO and CH4 Gas Sensor Response at Room Temperature of α-Fe2O3(0001) Epitaxial Thin Films Grown on SrTiO3(111) Incorporating Au(111) Islands
- Source :
- 'Coatings ', vol: 11, pages: 848-1-848-12 (2021), Coatings, Vol 11, Iss 848, p 848 (2021), Coatings, Volume 11, Issue 7, e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname
- Publication Year :
- 2021
- Publisher :
- Preprints, 2021.
-
Abstract
- In this work, the functional character of complex -Fe2O3(0001)/SrTiO3(111) and Au(111) islands/ -Fe2O3(0001)/SrTiO3(111) heterostructures has been proven as gas sensors at room temperature. Epitaxial Au islands and -Fe2O3 thin film are grown by pulsed laser deposition on SrTiO3(111) substrates. Intrinsic parameters such as the composition, particle size and epitaxial character are investigated for their influence on the gas sensing response. Both Au and -Fe2O3 layer show an island-type growth with an average particle size of 40 and 62 nm, respectively. The epitaxial and incommensurate growth is evidenced, confirming a rotation of 30 between the in-plane crystallographic axes of -Fe2O3(0001) structure and those of SrTiO3(111) substrate and between the in-plane crystallographic axes of Au(111) and those of -Fe2O3(0001) structure. -Fe2O3 is the only phase of iron oxide identified before and after its functionalization with Au nanoparticles. In addition, its structural characteristics are also preserved after Au deposition, with minor changes at short-range order. Conductance measurements of Au(111)/ -Fe2O3(0001)/SrTiO3(111) system show that the incorporation of epitaxial Au islands on top of the -Fe2O3(0001) layer induces an enhancement of the gas-sensing activity of around 25% under CO and 35% under CH4 gas exposure, in comparison to a bare -Fe2O3(0001) layer grown on SrTiO3(111) substrates. In addition, the response of the heterostructures to CO gas exposure is around 5–10% higher than to CH4 gas in each case. This work has been supported by the Ministerio Español de Ciencia e Innovación (MICINN) and the Consejo Superior de Investigaciones Cientificas (CSIC) through the projects PIE-2010-OE-013- 200014, PIE 2021-60-E-030 and RTI2018-095303-A-C52. The ESRF, MICINN and CSIC are acknowledged for the provision of synchrotron radiation facilities. A.S. acknowledges financial support from Comunidad de Madrid for an “Atracción de Talento Investigador” Contract (2017-t2/IND5395).
- Subjects :
- Materials science
Analytical chemistry
02 engineering and technology
Substrate (electronics)
010402 general chemistry
Epitaxy
01 natural sciences
Pulsed laser deposition
Phase (matter)
Materials Chemistry
Epitaxial growth
island-type growth
Thin film
Deposition (law)
surface functionalization
gas sensor activity
epitaxial growth
Física
Heterojunction
Química
Surfaces and Interfaces
Engineering (General). Civil engineering (General)
021001 nanoscience & nanotechnology
0104 chemical sciences
Surfaces, Coatings and Films
Au/ -Fe2o3 heterostructure
Gas sensor activity
Surface functionalization
Au/α-Fe2O3 heterostructure
Island-type growth
TA1-2040
0210 nano-technology
Layer (electronics)
biomaterials
Subjects
Details
- Language :
- English
- ISSN :
- 20796412
- Database :
- OpenAIRE
- Journal :
- 'Coatings ', vol: 11, pages: 848-1-848-12 (2021), Coatings, Vol 11, Iss 848, p 848 (2021), Coatings, Volume 11, Issue 7, e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname
- Accession number :
- edsair.doi.dedup.....30507385f9697bb2c0ea906a9629951e