Back to Search Start Over

Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon 'Candidatus Nitrosotalea devanaterra'

Authors :
Luis A. Sayavedra-Soto
Graeme W. Nicol
Nicolas Gallois
James I. Prosser
Stefan Schouten
Lisa Y. Stein
Laura E. Lehtovirta-Morley
Inst Biol & Environm Sci
University of Aberdeen
Department of Botany and Plant Pathology
Oregon State University (OSU)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)
Royal Netherlands Institute for Sea Research (NIOZ)
University of Alberta
Ampère, Département Bioingénierie (BioIng)
Ampère (AMPERE)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
non-UU output of UU-AW members
Institute of Biological and Environmental Science
Source :
Applied and Environmental Microbiology, Applied and Environmental Microbiology, American Society for Microbiology, 2016, 82 (9), pp.2608-2619. ⟨10.1128/AEM.04031-15⟩, Applied and Environmental Microbiology, 82(9), 2608. American Society for Microbiology, Applied and Environmental Microbiology, 2016, 82 (9), pp.2608-2619. ⟨10.1128/AEM.04031-15⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer “ Candidatus Nitrosotalea devanaterra” provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of “ Ca . Nitrosotalea devanaterra” reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that “ Ca . Nitrosotalea devanaterra” contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography–mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of “ Ca . Nitrosotalea devanaterra” were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization.

Details

Language :
English
ISSN :
00992240 and 10985336
Database :
OpenAIRE
Journal :
Applied and Environmental Microbiology, Applied and Environmental Microbiology, American Society for Microbiology, 2016, 82 (9), pp.2608-2619. ⟨10.1128/AEM.04031-15⟩, Applied and Environmental Microbiology, 82(9), 2608. American Society for Microbiology, Applied and Environmental Microbiology, 2016, 82 (9), pp.2608-2619. ⟨10.1128/AEM.04031-15⟩
Accession number :
edsair.doi.dedup.....303ad401ab5991c99f1569bdb59a3968
Full Text :
https://doi.org/10.1128/AEM.04031-15⟩